|
| 1 | +import os |
| 2 | +import sys |
| 3 | +from easydict import EasyDict |
| 4 | +sys.path.append(os.path.abspath(__file__ + '/../../..')) |
| 5 | +from basicts.metrics import masked_mae, masked_mse, masked_mape, masked_rmse |
| 6 | +from basicts.data import TimeSeriesForecastingDataset |
| 7 | +from basicts.runners import SimpleTimeSeriesForecastingRunner |
| 8 | +from basicts.scaler import ZScoreScaler |
| 9 | +from basicts.utils import get_regular_settings |
| 10 | + |
| 11 | +from .arch import iTransformer |
| 12 | + |
| 13 | +############################## Hot Parameters ############################## |
| 14 | +# Dataset & Metrics configuration |
| 15 | +DATA_NAME = 'Traffic' # Dataset name |
| 16 | +regular_settings = get_regular_settings(DATA_NAME) |
| 17 | +INPUT_LEN = 96 |
| 18 | +OUTPUT_LEN = 720 |
| 19 | +TRAIN_VAL_TEST_RATIO = regular_settings['TRAIN_VAL_TEST_RATIO'] # Train/Validation/Test split ratios |
| 20 | +NORM_EACH_CHANNEL = regular_settings['NORM_EACH_CHANNEL'] # Whether to normalize each channel of the data |
| 21 | +RESCALE = regular_settings['RESCALE'] # Whether to rescale the data |
| 22 | +NULL_VAL = regular_settings['NULL_VAL'] # Null value in the data |
| 23 | +# Model architecture and parameters |
| 24 | +MODEL_ARCH = iTransformer |
| 25 | +NUM_NODES = 862 |
| 26 | +MODEL_PARAM = { |
| 27 | + "enc_in": NUM_NODES, # num nodes |
| 28 | + "dec_in": NUM_NODES, |
| 29 | + "c_out": NUM_NODES, |
| 30 | + "seq_len": INPUT_LEN, |
| 31 | + "label_len": INPUT_LEN/2, # start token length used in decoder |
| 32 | + "pred_len": OUTPUT_LEN, # prediction sequence length |
| 33 | + "factor": 3, # attn factor |
| 34 | + "p_hidden_dims": [128, 128], |
| 35 | + "p_hidden_layers": 2, |
| 36 | + "d_model": 512, |
| 37 | + "moving_avg": 25, # window size of moving average. This is a CRUCIAL hyper-parameter. |
| 38 | + "n_heads": 8, |
| 39 | + "e_layers": 4, # num of encoder layers |
| 40 | + "d_layers": 1, # num of decoder layers |
| 41 | + "d_ff": 512, |
| 42 | + "distil": True, |
| 43 | + "sigma" : 0.2, |
| 44 | + "dropout": 0.1, |
| 45 | + "freq": 'h', |
| 46 | + "use_norm" : True, |
| 47 | + "output_attention": False, |
| 48 | + "embed": "timeF", # [timeF, fixed, learned] |
| 49 | + "activation": "gelu", |
| 50 | + "num_time_features": 4, # number of used time features |
| 51 | + "time_of_day_size": 24, |
| 52 | + "day_of_week_size": 7, |
| 53 | + "day_of_month_size": 31, |
| 54 | + "day_of_year_size": 366 |
| 55 | + } |
| 56 | +NUM_EPOCHS = 20 |
| 57 | + |
| 58 | +############################## General Configuration ############################## |
| 59 | +CFG = EasyDict() |
| 60 | +# General settings |
| 61 | +CFG.DESCRIPTION = 'An Example Config' |
| 62 | +CFG.GPU_NUM = 1 # Number of GPUs to use (0 for CPU mode) |
| 63 | +# Runner |
| 64 | +CFG.RUNNER = SimpleTimeSeriesForecastingRunner |
| 65 | + |
| 66 | +############################## Dataset Configuration ############################## |
| 67 | +CFG.DATASET = EasyDict() |
| 68 | +# Dataset settings |
| 69 | +CFG.DATASET.NAME = DATA_NAME |
| 70 | +CFG.DATASET.TYPE = TimeSeriesForecastingDataset |
| 71 | +CFG.DATASET.PARAM = EasyDict({ |
| 72 | + 'dataset_name': DATA_NAME, |
| 73 | + 'train_val_test_ratio': TRAIN_VAL_TEST_RATIO, |
| 74 | + 'input_len': INPUT_LEN, |
| 75 | + 'output_len': OUTPUT_LEN, |
| 76 | + # 'mode' is automatically set by the runner |
| 77 | +}) |
| 78 | + |
| 79 | +############################## Scaler Configuration ############################## |
| 80 | +CFG.SCALER = EasyDict() |
| 81 | +# Scaler settings |
| 82 | +CFG.SCALER.TYPE = ZScoreScaler # Scaler class |
| 83 | +CFG.SCALER.PARAM = EasyDict({ |
| 84 | + 'dataset_name': DATA_NAME, |
| 85 | + 'train_ratio': TRAIN_VAL_TEST_RATIO[0], |
| 86 | + 'norm_each_channel': NORM_EACH_CHANNEL, |
| 87 | + 'rescale': RESCALE, |
| 88 | +}) |
| 89 | + |
| 90 | +############################## Model Configuration ############################## |
| 91 | +CFG.MODEL = EasyDict() |
| 92 | +# Model settings |
| 93 | +CFG.MODEL.NAME = MODEL_ARCH.__name__ |
| 94 | +CFG.MODEL.ARCH = MODEL_ARCH |
| 95 | +CFG.MODEL.PARAM = MODEL_PARAM |
| 96 | +CFG.MODEL.FORWARD_FEATURES = [0, 1, 2, 3, 4] |
| 97 | +CFG.MODEL.TARGET_FEATURES = [0] |
| 98 | + |
| 99 | +############################## Metrics Configuration ############################## |
| 100 | + |
| 101 | +CFG.METRICS = EasyDict() |
| 102 | +# Metrics settings |
| 103 | +CFG.METRICS.FUNCS = EasyDict({ |
| 104 | + 'MAE': masked_mae, |
| 105 | + 'MSE': masked_mse, |
| 106 | + 'RMSE': masked_rmse, |
| 107 | + 'MAPE': masked_mape |
| 108 | + }) |
| 109 | +CFG.METRICS.TARGET = 'MSE' |
| 110 | +CFG.METRICS.NULL_VAL = NULL_VAL |
| 111 | + |
| 112 | +############################## Training Configuration ############################## |
| 113 | +CFG.TRAIN = EasyDict() |
| 114 | +CFG.TRAIN.NUM_EPOCHS = NUM_EPOCHS |
| 115 | +CFG.TRAIN.CKPT_SAVE_DIR = os.path.join( |
| 116 | + 'checkpoints', |
| 117 | + MODEL_ARCH.__name__, |
| 118 | + '_'.join([DATA_NAME, str(CFG.TRAIN.NUM_EPOCHS), str(INPUT_LEN), str(OUTPUT_LEN)]) |
| 119 | +) |
| 120 | +CFG.TRAIN.LOSS = masked_mae |
| 121 | +# Optimizer settings |
| 122 | +CFG.TRAIN.OPTIM = EasyDict() |
| 123 | +CFG.TRAIN.OPTIM.TYPE = "Adam" |
| 124 | +CFG.TRAIN.OPTIM.PARAM = { |
| 125 | + "lr": 0.001, |
| 126 | +} |
| 127 | +# Learning rate scheduler settings |
| 128 | +CFG.TRAIN.LR_SCHEDULER = EasyDict() |
| 129 | +CFG.TRAIN.LR_SCHEDULER.TYPE = "MultiStepLR" |
| 130 | +CFG.TRAIN.LR_SCHEDULER.PARAM = { |
| 131 | + "milestones": [5, 10], |
| 132 | + "gamma": 0.5 |
| 133 | +} |
| 134 | +CFG.TRAIN.CLIP_GRAD_PARAM = { |
| 135 | + 'max_norm': 5.0 |
| 136 | +} |
| 137 | +# Train data loader settings |
| 138 | +CFG.TRAIN.DATA = EasyDict() |
| 139 | +CFG.TRAIN.DATA.BATCH_SIZE = 32 |
| 140 | +CFG.TRAIN.DATA.SHUFFLE = True |
| 141 | + |
| 142 | +############################## Validation Configuration ############################## |
| 143 | +CFG.VAL = EasyDict() |
| 144 | +CFG.VAL.INTERVAL = 1 |
| 145 | +CFG.VAL.DATA = EasyDict() |
| 146 | +CFG.VAL.DATA.BATCH_SIZE = 32 |
| 147 | + |
| 148 | +############################## Test Configuration ############################## |
| 149 | +CFG.TEST = EasyDict() |
| 150 | +CFG.TEST.INTERVAL = 1 |
| 151 | +CFG.TEST.DATA = EasyDict() |
| 152 | +CFG.TEST.DATA.BATCH_SIZE = 32 |
| 153 | + |
| 154 | +############################## Evaluation Configuration ############################## |
| 155 | + |
| 156 | +CFG.EVAL = EasyDict() |
| 157 | + |
| 158 | +# Evaluation parameters |
| 159 | +CFG.EVAL.USE_GPU = False # Whether to use GPU for evaluation. Default: True |
0 commit comments