-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi.py
24 lines (18 loc) · 840 Bytes
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from flask import Flask, request, jsonify
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
app = Flask(__name__)
# Load your trained chatbot model and tokenizer
model = AutoModelForCausalLM.from_pretrained("/home/saber/Desktop/pfe/chat/chat.py")
tokenizer = AutoTokenizer.from_pretrained("/home/saber/Desktop/pfe/chat/chat.py")
@app.route('/chat', methods=['POST'])
def chat():
user_input = request.json.get('message', '')
# Tokenize the user's input and generate a response
inputs = tokenizer(user_input, return_tensors="pt")
outputs = model.generate(**inputs)
bot_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Return the chatbot response as a JSON
return jsonify({'response': bot_response})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)