Skip to content

Need help in reproducing the results #4

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
amitdoda1983 opened this issue Apr 4, 2024 · 0 comments
Open

Need help in reproducing the results #4

amitdoda1983 opened this issue Apr 4, 2024 · 0 comments

Comments

@amitdoda1983
Copy link

amitdoda1983 commented Apr 4, 2024

Hi,

First of all, thanks for sharing the code and details here. I am exploring the continual learning space and going through this paper / code for better understanding.

I ran the code for few configurations and have the below observations/ queries.

  1. I believe the results table in the paper uses Avg_End_Acc that we get after 10 runs.

  2. I could reproduce the results (approx. almost same as table) for PCR (cifar10 & cifar100).

  3. I am facing issues running PCR for mini_imagenet.
    Error :
    File "/content/PCR/models/resnet.py", line 85, in forward
    cos_dist = torch.mm(x_normalized,weight_normalized.transpose(0,1))
    RuntimeError: mat1 and mat2 shapes cannot be multiplied (20x640 and 160x100)

  4. I could reproduce the results for SCR (all datasets) to somewhat very close to the table results.

  5. However i am getting very different results for ER, GSS, MIR & ASER for all the three datasets and buffer sizes.

  6. for example, below are logs/results for my results for few experiments.

Please review if my configurations/ parameters are right for respective model experiment.

ER cifar10

!python general_main.py --num_runs 10 --data cifar10 --cl_type nc --agent ER --retrieve random --update random --mem_size 100 --num_tasks 5

Namespace(num_runs=10, seed=0, val_size=0.1, num_val=3, num_runs_val=3, error_analysis=False, verbose=True, store=False, save_path=None, agent='ER', update='random', retrieve='random', optimizer='SGD', learning_rate=0.1, epoch=1, batch=10, test_batch=128, weight_decay=0, num_tasks=5, fix_order=False, plot_sample=False, data='cifar10', cl_type='nc', ns_factor=(0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6), ns_type='noise', ns_task=(1, 1, 2, 2, 2, 2), online=True, mem_size=100, eps_mem_batch=10, lambda_=100, alpha=0.9, fisher_update_after=50, subsample=50, gss_mem_strength=10, gss_batch_size=10, k=5, aser_type='asvm', n_smp_cls=2.0, stm_capacity=1000, classifier_chill=0.01, log_alpha=-300, minlr=0.0005, clip=10.0, mem_epoch=70, labels_trick=False, separated_softmax=False, kd_trick=False, kd_trick_star=False, review_trick=False, ncm_trick=False, mem_iters=1, min_delta=0.0, patience=0, cumulative_delta=False, temp=0.07, buffer_tracker=False, warmup=4, head='mlp', cuda=True)


Avg_End_Acc (0.19796999999999998, 0.008131261957618655) Avg_End_Fgt (0.67701, 0.020675848339865154)
Avg_Acc (0.4240406666666667, 0.011397132721618845) Avg_Bwtp (0.0, 0.0) Avg_Fwt (0.0, 0.0)

MIR cifar10

!python general_main.py --num_runs 10 --data cifar10 --cl_type nc --agent ER --retrieve MIR --update random --mem_size 100 --num_tasks 5

Namespace(num_runs=10, seed=0, val_size=0.1, num_val=3, num_runs_val=3, error_analysis=False, verbose=True, store=False, save_path=None, agent='ER', update='random', retrieve='MIR', optimizer='SGD', learning_rate=0.1, epoch=1, batch=10, test_batch=128, weight_decay=0, num_tasks=5, fix_order=False, plot_sample=False, data='cifar10', cl_type='nc', ns_factor=(0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6), ns_type='noise', ns_task=(1, 1, 2, 2, 2, 2), online=True, mem_size=100, eps_mem_batch=10, lambda_=100, alpha=0.9, fisher_update_after=50, subsample=50, gss_mem_strength=10, gss_batch_size=10, k=5, aser_type='asvm', n_smp_cls=2.0, stm_capacity=1000, classifier_chill=0.01, log_alpha=-300, minlr=0.0005, clip=10.0, mem_epoch=70, labels_trick=False, separated_softmax=False, kd_trick=False, kd_trick_star=False, review_trick=False, ncm_trick=False, mem_iters=1, min_delta=0.0, patience=0, cumulative_delta=False, temp=0.07, buffer_tracker=False, warmup=4, head='mlp', cuda=True)

----------- Avg_End_Acc (0.20265999999999998, 0.009694146294515506) Avg_End_Fgt (0.67465, 0.030499070146613624) Avg_Acc (0.42342783333333334, 0.013827498535359988) Avg_Bwtp (0.0, 0.0) Avg_Fwt (0.0, 0.0)-----------

ASER cifar10

!python general_main.py --num_runs 10 --data cifar10 --cl_type nc --agent ER --retrieve ASER --update ASER --mem_size 100 --num_tasks 5

Namespace(num_runs=10, seed=0, val_size=0.1, num_val=3, num_runs_val=3, error_analysis=False, verbose=True, store=False, save_path=None, agent='ER', update='ASER', retrieve='ASER', optimizer='SGD', learning_rate=0.1, epoch=1, batch=10, test_batch=128, weight_decay=0, num_tasks=5, fix_order=False, plot_sample=False, data='cifar10', cl_type='nc', ns_factor=(0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6), ns_type='noise', ns_task=(1, 1, 2, 2, 2, 2), online=True, mem_size=100, eps_mem_batch=10, lambda_=100, alpha=0.9, fisher_update_after=50, subsample=50, gss_mem_strength=10, gss_batch_size=10, k=5, aser_type='asvm', n_smp_cls=2.0, stm_capacity=1000, classifier_chill=0.01, log_alpha=-300, minlr=0.0005, clip=10.0, mem_epoch=70, labels_trick=False, separated_softmax=False, kd_trick=False, kd_trick_star=False, review_trick=False, ncm_trick=False, mem_iters=1, min_delta=0.0, patience=0, cumulative_delta=False, temp=0.07, buffer_tracker=False, warmup=4, head='mlp', cuda=True)

----------- Avg_End_Acc (0.20358, 0.006487462886215012) Avg_End_Fgt (0.6760400000000001, 0.025897505237588537) Avg_Acc (0.42569850000000004, 0.009808121280926051) Avg_Bwtp (0.0, 0.0) Avg_Fwt (0.0, 0.0)-----------

This is the full table showing the reproduced results.

image

Request you to help me with these queries.

Regards
Amit

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant