You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
First of all, thanks for sharing the code and details here. I am exploring the continual learning space and going through this paper / code for better understanding.
I ran the code for few configurations and have the below observations/ queries.
I believe the results table in the paper uses Avg_End_Acc that we get after 10 runs.
I could reproduce the results (approx. almost same as table) for PCR (cifar10 & cifar100).
I am facing issues running PCR for mini_imagenet.
Error :
File "/content/PCR/models/resnet.py", line 85, in forward
cos_dist = torch.mm(x_normalized,weight_normalized.transpose(0,1))
RuntimeError: mat1 and mat2 shapes cannot be multiplied (20x640 and 160x100)
I could reproduce the results for SCR (all datasets) to somewhat very close to the table results.
However i am getting very different results for ER, GSS, MIR & ASER for all the three datasets and buffer sizes.
for example, below are logs/results for my results for few experiments.
Please review if my configurations/ parameters are right for respective model experiment.
ER cifar10
!python general_main.py --num_runs 10 --data cifar10 --cl_type nc --agent ER --retrieve random --update random --mem_size 100 --num_tasks 5
Uh oh!
There was an error while loading. Please reload this page.
Hi,
First of all, thanks for sharing the code and details here. I am exploring the continual learning space and going through this paper / code for better understanding.
I ran the code for few configurations and have the below observations/ queries.
I believe the results table in the paper uses Avg_End_Acc that we get after 10 runs.
I could reproduce the results (approx. almost same as table) for PCR (cifar10 & cifar100).
I am facing issues running PCR for mini_imagenet.
Error :
File "/content/PCR/models/resnet.py", line 85, in forward
cos_dist = torch.mm(x_normalized,weight_normalized.transpose(0,1))
RuntimeError: mat1 and mat2 shapes cannot be multiplied (20x640 and 160x100)
I could reproduce the results for SCR (all datasets) to somewhat very close to the table results.
However i am getting very different results for ER, GSS, MIR & ASER for all the three datasets and buffer sizes.
for example, below are logs/results for my results for few experiments.
Please review if my configurations/ parameters are right for respective model experiment.
ER cifar10
!python general_main.py --num_runs 10 --data cifar10 --cl_type nc --agent ER --retrieve random --update random --mem_size 100 --num_tasks 5
Namespace(num_runs=10, seed=0, val_size=0.1, num_val=3, num_runs_val=3, error_analysis=False, verbose=True, store=False, save_path=None, agent='ER', update='random', retrieve='random', optimizer='SGD', learning_rate=0.1, epoch=1, batch=10, test_batch=128, weight_decay=0, num_tasks=5, fix_order=False, plot_sample=False, data='cifar10', cl_type='nc', ns_factor=(0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6), ns_type='noise', ns_task=(1, 1, 2, 2, 2, 2), online=True, mem_size=100, eps_mem_batch=10, lambda_=100, alpha=0.9, fisher_update_after=50, subsample=50, gss_mem_strength=10, gss_batch_size=10, k=5, aser_type='asvm', n_smp_cls=2.0, stm_capacity=1000, classifier_chill=0.01, log_alpha=-300, minlr=0.0005, clip=10.0, mem_epoch=70, labels_trick=False, separated_softmax=False, kd_trick=False, kd_trick_star=False, review_trick=False, ncm_trick=False, mem_iters=1, min_delta=0.0, patience=0, cumulative_delta=False, temp=0.07, buffer_tracker=False, warmup=4, head='mlp', cuda=True)
Avg_End_Acc (0.19796999999999998, 0.008131261957618655) Avg_End_Fgt (0.67701, 0.020675848339865154)
Avg_Acc (0.4240406666666667, 0.011397132721618845) Avg_Bwtp (0.0, 0.0) Avg_Fwt (0.0, 0.0)
MIR cifar10
!python general_main.py --num_runs 10 --data cifar10 --cl_type nc --agent ER --retrieve MIR --update random --mem_size 100 --num_tasks 5
Namespace(num_runs=10, seed=0, val_size=0.1, num_val=3, num_runs_val=3, error_analysis=False, verbose=True, store=False, save_path=None, agent='ER', update='random', retrieve='MIR', optimizer='SGD', learning_rate=0.1, epoch=1, batch=10, test_batch=128, weight_decay=0, num_tasks=5, fix_order=False, plot_sample=False, data='cifar10', cl_type='nc', ns_factor=(0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6), ns_type='noise', ns_task=(1, 1, 2, 2, 2, 2), online=True, mem_size=100, eps_mem_batch=10, lambda_=100, alpha=0.9, fisher_update_after=50, subsample=50, gss_mem_strength=10, gss_batch_size=10, k=5, aser_type='asvm', n_smp_cls=2.0, stm_capacity=1000, classifier_chill=0.01, log_alpha=-300, minlr=0.0005, clip=10.0, mem_epoch=70, labels_trick=False, separated_softmax=False, kd_trick=False, kd_trick_star=False, review_trick=False, ncm_trick=False, mem_iters=1, min_delta=0.0, patience=0, cumulative_delta=False, temp=0.07, buffer_tracker=False, warmup=4, head='mlp', cuda=True)
----------- Avg_End_Acc (0.20265999999999998, 0.009694146294515506) Avg_End_Fgt (0.67465, 0.030499070146613624) Avg_Acc (0.42342783333333334, 0.013827498535359988) Avg_Bwtp (0.0, 0.0) Avg_Fwt (0.0, 0.0)-----------
ASER cifar10
!python general_main.py --num_runs 10 --data cifar10 --cl_type nc --agent ER --retrieve ASER --update ASER --mem_size 100 --num_tasks 5
Namespace(num_runs=10, seed=0, val_size=0.1, num_val=3, num_runs_val=3, error_analysis=False, verbose=True, store=False, save_path=None, agent='ER', update='ASER', retrieve='ASER', optimizer='SGD', learning_rate=0.1, epoch=1, batch=10, test_batch=128, weight_decay=0, num_tasks=5, fix_order=False, plot_sample=False, data='cifar10', cl_type='nc', ns_factor=(0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6), ns_type='noise', ns_task=(1, 1, 2, 2, 2, 2), online=True, mem_size=100, eps_mem_batch=10, lambda_=100, alpha=0.9, fisher_update_after=50, subsample=50, gss_mem_strength=10, gss_batch_size=10, k=5, aser_type='asvm', n_smp_cls=2.0, stm_capacity=1000, classifier_chill=0.01, log_alpha=-300, minlr=0.0005, clip=10.0, mem_epoch=70, labels_trick=False, separated_softmax=False, kd_trick=False, kd_trick_star=False, review_trick=False, ncm_trick=False, mem_iters=1, min_delta=0.0, patience=0, cumulative_delta=False, temp=0.07, buffer_tracker=False, warmup=4, head='mlp', cuda=True)
----------- Avg_End_Acc (0.20358, 0.006487462886215012) Avg_End_Fgt (0.6760400000000001, 0.025897505237588537) Avg_Acc (0.42569850000000004, 0.009808121280926051) Avg_Bwtp (0.0, 0.0) Avg_Fwt (0.0, 0.0)-----------
This is the full table showing the reproduced results.
Request you to help me with these queries.
Regards
Amit
The text was updated successfully, but these errors were encountered: