|
1 | 1 | from __future__ import annotations
|
2 | 2 |
|
| 3 | +import pyarrow as pa |
3 | 4 | import pytest
|
4 | 5 |
|
| 6 | +import daft |
5 | 7 | from daft.datatype import DataType
|
6 | 8 | from daft.expressions import col
|
7 | 9 | from daft.recordbatch import MicroPartition
|
@@ -33,3 +35,75 @@ def test_list_min(table):
|
33 | 35 | def test_list_max(table):
|
34 | 36 | result = table.eval_expression_list([col("a").list.max()])
|
35 | 37 | assert result.to_pydict() == {"a": [2, 4, 5, None, None]}
|
| 38 | + |
| 39 | + |
| 40 | +def test_list_numeric_aggs_empty_table(): |
| 41 | + empty_table = MicroPartition.from_pydict( |
| 42 | + { |
| 43 | + "col": pa.array([], type=pa.list_(pa.int64())), |
| 44 | + "fixed_col": pa.array([], type=pa.list_(pa.int64(), 2)), |
| 45 | + } |
| 46 | + ) |
| 47 | + |
| 48 | + result = empty_table.eval_expression_list( |
| 49 | + [ |
| 50 | + col("col").cast(DataType.list(DataType.int64())).list.sum().alias("col_sum"), |
| 51 | + col("col").list.mean().alias("col_mean"), |
| 52 | + col("col").list.min().alias("col_min"), |
| 53 | + col("col").list.max().alias("col_max"), |
| 54 | + col("fixed_col").list.sum().alias("fixed_col_sum"), |
| 55 | + col("fixed_col").list.mean().alias("fixed_col_mean"), |
| 56 | + col("fixed_col").list.min().alias("fixed_col_min"), |
| 57 | + col("fixed_col").list.max().alias("fixed_col_max"), |
| 58 | + ] |
| 59 | + ) |
| 60 | + assert result.to_pydict() == { |
| 61 | + "col_sum": [], |
| 62 | + "col_mean": [], |
| 63 | + "col_min": [], |
| 64 | + "col_max": [], |
| 65 | + "fixed_col_sum": [], |
| 66 | + "fixed_col_mean": [], |
| 67 | + "fixed_col_min": [], |
| 68 | + "fixed_col_max": [], |
| 69 | + } |
| 70 | + |
| 71 | + |
| 72 | +def test_list_numeric_aggs_with_groupby(): |
| 73 | + df = daft.from_pydict( |
| 74 | + { |
| 75 | + "group_col": [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3], |
| 76 | + "id_col": [3, 1, 2, 2, 5, 4, None, 3, None, None, None, None], |
| 77 | + } |
| 78 | + ) |
| 79 | + |
| 80 | + # Group by and test aggregates. |
| 81 | + grouped_df = df.groupby("group_col").agg(daft.col("id_col").agg_list().alias("ids_col")) |
| 82 | + result = grouped_df.select( |
| 83 | + col("group_col"), |
| 84 | + col("ids_col").list.sum().alias("ids_col_sum"), |
| 85 | + col("ids_col").list.mean().alias("ids_col_mean"), |
| 86 | + col("ids_col").list.min().alias("ids_col_min"), |
| 87 | + col("ids_col").list.max().alias("ids_col_max"), |
| 88 | + ).sort("group_col", desc=False) |
| 89 | + result_dict = result.to_pydict() |
| 90 | + expected = { |
| 91 | + "group_col": [1, 2, 3], |
| 92 | + "ids_col_sum": [8, 12, None], |
| 93 | + "ids_col_mean": [2.0, 4.0, None], |
| 94 | + "ids_col_min": [1, 3, None], |
| 95 | + "ids_col_max": [3, 5, None], |
| 96 | + } |
| 97 | + assert result_dict == expected |
| 98 | + |
| 99 | + # Cast to fixed size list, group by, and test aggregates. |
| 100 | + grouped_df = grouped_df.with_column("ids_col", col("ids_col").cast(DataType.fixed_size_list(DataType.int64(), 4))) |
| 101 | + result = grouped_df.select( |
| 102 | + col("group_col"), |
| 103 | + col("ids_col").list.sum().alias("ids_col_sum"), |
| 104 | + col("ids_col").list.mean().alias("ids_col_mean"), |
| 105 | + col("ids_col").list.min().alias("ids_col_min"), |
| 106 | + col("ids_col").list.max().alias("ids_col_max"), |
| 107 | + ).sort("group_col", desc=False) |
| 108 | + result_dict = result.to_pydict() |
| 109 | + assert result_dict == expected |
0 commit comments