Skip to content

Commit fded54d

Browse files
authored
relocate MindsDB (#579)
1 parent d39e5bc commit fded54d

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -294,7 +294,6 @@ Please review our [CONTRIBUTING.md](https://github.com/EthicalML/awesome-product
294294
* [Lightwood](https://github.com/mindsdb/lightwood) ![](https://img.shields.io/github/stars/mindsdb/lightwood.svg?style=social) - A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glued together seamlessly with an objective to build predictive models with one line of code.
295295
* [LIME](https://github.com/marcotcr/lime) ![](https://img.shields.io/github/stars/marcotcr/lime.svg?style=social) - Local Interpretable Model-agnostic Explanations for machine learning models.
296296
* [LOFO Importance](https://github.com/aerdem4/lofo-importance) ![](https://img.shields.io/github/stars/aerdem4/lofo-importance.svg?style=social) - LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and evaluating the performance of the model, with a validation scheme of choice, based on the chosen metric.
297-
* [MindsDB](https://github.com/mindsdb/mindsdb) ![](https://img.shields.io/github/stars/mindsdb/mindsdb.svg?style=social) - MindsDB is an Explainable AutoML framework for developers. With MindsDB you can build, train and use state of the art ML models in as simple as one line of code.
298297
* [mljar-supervised](https://github.com/mljar/mljar-supervised) ![](https://img.shields.io/github/stars/mljar/mljar-supervised.svg?style=social) - A Python package for AutoML on tabular data with feature engineering, hyper-parameters tuning, explanations and automatic documentation.
299298
* [NETRON](https://github.com/lutzroeder/netron) ![](https://img.shields.io/github/stars/lutzroeder/netron.svg?style=social) - Viewer for neural network, deep learning and machine learning models.
300299
* [SHAP](https://github.com/shap/shap) ![](https://img.shields.io/github/stars/shap/shap.svg?style=social) - SHapley Additive exPlanations is a unified approach to explain the output of any machine learning model.
@@ -553,6 +552,7 @@ Please review our [CONTRIBUTING.md](https://github.com/EthicalML/awesome-product
553552
* [LLMonitor](https://github.com/lunary-ai/lunary) ![](https://img.shields.io/github/stars/lunary-ai/lunary.svg?style=social) - Observability & analytics for AI apps and agents.
554553
* [LocalAI](https://github.com/mudler/LocalAI) ![](https://img.shields.io/github/stars/mudler/LocalAI.svg?style=social) - LocalAI is a drop-in replacement REST API that's compatible with OpenAI API specifications for local inferencing.
555554
* [m2cgen](https://github.com/BayesWitnesses/m2cgen) ![](https://img.shields.io/github/stars/BayesWitnesses/m2cgen.svg?style=social) - A lightweight library which allows to transpile trained classic machine learning models into a native code of C, Java, Go, R, PHP, Dart, Haskell, Rust and many other programming languages.
555+
* [MindsDB](https://github.com/mindsdb/mindsdb) ![](https://img.shields.io/github/stars/mindsdb/mindsdb.svg?style=social) - MindsDB is the platform to create, serve, and fine-tune models in real-time from your database, vector store, and application data.
556556
* [MLRun](https://github.com/mlrun/mlrun)![](https://img.shields.io/github/stars/mlrun/mlrun.svg?style=social)- MLRun is an open MLOps framework for quickly building and managing continuous ML and generative AI applications across their lifecycle.
557557
* [MLServer](https://github.com/SeldonIO/mlserver) ![](https://img.shields.io/github/stars/SeldonIO/mlserver.svg?style=social) - An inference server for your machine learning models, including support for multiple frameworks, multi-model serving and more.
558558
* [mltrace](https://github.com/loglabs/mltrace) ![](https://img.shields.io/github/stars/loglabs/mltrace.svg?style=social) - a lightweight, open-source Python tool to get "bolt-on" observability in ML pipelines.

0 commit comments

Comments
 (0)