-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
257 lines (213 loc) · 10.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import config
import indicators
import nasdaqdatalink
import yfinance
import pandas as pd
import datetime
import random
def date_string_to_datetime(date_string):
return datetime.datetime.strptime(date_string, "%Y-%m-%d")
def get_next_day_string(current_day_string):
current_day_datetime = date_string_to_datetime(current_day_string)
next_day_datetime = current_day_datetime + datetime.timedelta(days=1)
next_day_string = next_day_datetime.strftime("%Y-%m-%d")
return next_day_string
def date_range(start_datetime, end_datetime):
for i in range(int((end_datetime - start_datetime).days) + 1):
yield start_datetime + datetime.timedelta(i)
def fill_missing_data(df, start_time, end_time):
start_datetime = date_string_to_datetime(start_time)
end_datetime = date_string_to_datetime(end_time)
df_new = df[0:0]
dates_list = [str(datetime)[:10] for datetime in date_range(start_datetime, end_datetime)]
datetimes_list = [datetime for datetime in date_range(start_datetime, end_datetime)]
dates_index = 0
first_df_row_value = df.iloc[0, 1]
while dates_list[dates_index] < str(df.iloc[0, 0])[:10]:
new_row = pd.DataFrame({"Date": [datetimes_list[dates_index]],
"Value": [first_df_row_value]})
df_new = pd.concat([df_new, new_row], axis=0, ignore_index=True)
dates_index += 1
last_dates_index = dates_index
df_index = 0
for dates_index in range(last_dates_index, len(dates_list)):
if df_index < df.shape[0] and str(df.iloc[df_index, 0])[:10] == dates_list[dates_index]:
new_row = pd.DataFrame({"Date": [df.iloc[df_index, 0]],
"Value": [df.iloc[df_index, 1]]})
df_new = pd.concat([df_new, new_row], axis=0, ignore_index=True)
last_new_row_value = df.iloc[df_index, 1]
df_index += 1
elif df_index >= df.shape[0] or str(df.iloc[df_index, 0])[:10] > dates_list[dates_index]:
new_row = pd.DataFrame({"Date": [datetimes_list[dates_index]],
"Value": [last_new_row_value]})
df_new = pd.concat([df_new, new_row], axis=0, ignore_index=True)
if df_index >= df.shape[0]:
print("WARNING: Missing data added to the end of the downloaded dataframe. Date:", datetimes_list[dates_index])
return df_new
def remove_extra_data(df, start_time, end_time):
rows_to_be_removed = []
for index, row in df.iterrows():
if str(row["Date"])[:10] < start_time or str(row["Date"])[:10] > end_time:
rows_to_be_removed.append(index)
df = df.drop(rows_to_be_removed)
return df
def get_data_for_pair_name(pair_name, column_name, data_source, start_time, end_time, forecast_days):
if data_source == "nasdaq-data-link":
df = nasdaqdatalink.get(pair_name, start_date=start_time, end_date=end_time)
elif data_source == "yfinance":
df = yfinance.download(pair_name, start=get_next_day_string(start_time), end=get_next_day_string(end_time), interval="1d", auto_adjust=True, prepost=True, threads=True)
df = df.reset_index()
df = df[['Date', column_name]]
df = df.rename(columns={column_name: "Value"})
return df
def get_values_list_from_dataframe(df):
return df["Value"].tolist()
def get_values_for_pair_names_list(pair_names_with_column_name_list, start_time, end_time, forecast_days):
all_pair_names_values_list = []
for pair_name, column_name, data_source in pair_names_with_column_name_list:
print("Quote:", pair_name, "(" + str(column_name) + ", " + str(data_source) + ")")
df = get_data_for_pair_name(pair_name, column_name, data_source, start_time, end_time, forecast_days)
print("Data downloaded")
df = remove_extra_data(df, start_time, end_time)
print("Extra data removed")
df = fill_missing_data(df, start_time, end_time)
print("Missing data filled")
values_list = get_values_list_from_dataframe(df)
print("_" * 80)
all_pair_names_values_list.append(values_list)
return all_pair_names_values_list
def get_target_pair_name_list(pair_name, column_name, data_source, start_time, end_time, forecast_days, number_of_candles, use_wma_for_forecast_days):
if data_source == "nasdaq-data-link":
df = nasdaqdatalink.get(pair_name, start_date=start_time, end_date=end_time)
elif data_source == "yfinance":
df = yfinance.download(pair_name, start=get_next_day_string(start_time), end=get_next_day_string(end_time), interval="1d", auto_adjust=True, prepost=True, threads=True)
df = df.reset_index()
df = remove_extra_data(df, start_time, end_time)
target_list = []
close_prices = []
for index, row in df.iterrows():
close_prices.append(float(row[column_name]))
for i in range(len(close_prices)):
if i >= number_of_candles - 1 and i + 1 + forecast_days <= len(close_prices):
if use_wma_for_forecast_days:
if close_prices[i] <= indicators.get_wma(close_prices[i + 1:i + 1 + forecast_days]):
target_list.append(1)
else:
target_list.append(0)
else:
if close_prices[i] <= close_prices[i + forecast_days]:
target_list.append(1)
else:
target_list.append(0)
close_prices.append(float(row[column_name]))
return target_list
def concat_no_target_dataset_with_targets_list(no_target_dataset, targets_list):
dataset = no_target_dataset.copy()
for i in range(min(len(dataset), len(targets_list))):
dataset[i].append(targets_list[i])
return dataset
def generate_no_target_dataset_from_pair_names_values_list(pair_names_values_list, number_of_candles, sma_lengths_list):
no_target_dataset = []
for i in range(len(pair_names_values_list[0]) - number_of_candles):
no_target_dataset_row = []
for j in range(len(pair_names_values_list)):
current_values = pair_names_values_list[j][i:i + number_of_candles]
no_target_dataset_row.extend(current_values)
for k in range(len(sma_lengths_list)):
sma_list = [indicators.get_average(current_values[t - sma_lengths_list[k]:t]) for t in range(sma_lengths_list[k], len(current_values))]
no_target_dataset_row.extend(sma_list)
no_target_dataset.append(no_target_dataset_row)
return no_target_dataset
def split_train_and_test_dataset(dataset, test_set_size_ratio):
dataset_train = dataset[:int((1 - test_set_size_ratio) * len(dataset))]
dataset_test = dataset[int((1 - test_set_size_ratio) * len(dataset)):]
return dataset_train, dataset_test
def add_noise_to_dataset(dataset_train, augmentation_noise_interval, train_dataset_new_size_coefficient):
dataset_train_new = []
for row in dataset_train:
dataset_train_new.append(row)
for i in range(train_dataset_new_size_coefficient - 1):
new_row = []
for value in row[:-1]:
r = 1 + (2 * (random.random() - 0.5) * augmentation_noise_interval)
new_value = value * r
new_row.append(new_value)
new_row.append(row[-1])
dataset_train_new.append(row)
return dataset_train_new
def save_dataset_to_file(dataset_train, dataset_test, dataset_pred, train_csv_file_path, test_csv_file_path, pred_csv_file_path, csv_delimiter):
with open(train_csv_file_path, 'w') as file:
for dataset_line in dataset_train:
for index, data in enumerate(dataset_line):
file.write(str(data))
if index != len(dataset_line) - 1:
file.write(csv_delimiter)
file.write('\n')
with open(test_csv_file_path, 'w') as file:
for dataset_line in dataset_test:
for index, data in enumerate(dataset_line):
file.write(str(data))
if index != len(dataset_line) - 1:
file.write(csv_delimiter)
file.write('\n')
with open(pred_csv_file_path, 'w') as file:
for dataset_line in dataset_pred:
for index, data in enumerate(dataset_line):
file.write(str(data))
if index != len(dataset_line) - 1:
file.write(csv_delimiter)
file.write('\n')
print("Train set size:", str(len(dataset_train)) + "x" + str(len(dataset_train[0])))
print("Test set size:", str(len(dataset_test)) + "x" + str(len(dataset_test[0])))
print("Dataset saved to file")
print("_" * 80)
def concat_datasets(dataset1, dataset2):
ret = []
for row in dataset1:
ret.append(row)
for row in dataset2:
ret.append(row)
return ret
def remove_intersected_rows_in_train_dataset(dataset_train, number_of_candles, forecast_days):
ret = []
for i in range(len(dataset_train)):
if i % (number_of_candles + forecast_days) == 0:
ret.append(dataset_train[i])
return ret
def generate_dataset(pair_names_list, target_pair_name_with_source, start_time, end_time, forecast_days, number_of_candles, train_csv_file_path, test_csv_file_path, pred_csv_file_path, csv_delimiter, test_set_size_ratio, sma_lengths_list, apply_noise_augmentation, augmentation_noise_sigma, train_dataset_new_size_coefficient, use_wma_for_forecast_days):
all_pair_names_values_list = get_values_for_pair_names_list(pair_names_list, start_time, end_time, forecast_days)
no_target_dataset = generate_no_target_dataset_from_pair_names_values_list(all_pair_names_values_list, number_of_candles, sma_lengths_list)
dataset_pred = no_target_dataset.copy()[-60:]
print("Target pair_name:", target_pair_name_with_source[0], "(" + str(target_pair_name_with_source[1]) + ")")
target_pair_name_list = get_target_pair_name_list(target_pair_name_with_source[0], target_pair_name_with_source[1], target_pair_name_with_source[2], start_time, end_time, forecast_days, number_of_candles, use_wma_for_forecast_days)
dataset = concat_no_target_dataset_with_targets_list(no_target_dataset, target_pair_name_list)
dataset_train, dataset_test = split_train_and_test_dataset(dataset, test_set_size_ratio)
dataset_train = remove_intersected_rows_in_train_dataset(dataset_train, number_of_candles, forecast_days)
print("_" * 80)
if apply_noise_augmentation:
dataset_train = add_noise_to_dataset(dataset_train, augmentation_noise_sigma, train_dataset_new_size_coefficient)
print("Noise augmentation applied")
print("_" * 80)
save_dataset_to_file(dataset_train, dataset_test, dataset_pred, train_csv_file_path, test_csv_file_path, pred_csv_file_path, csv_delimiter)
def read_api_key(api_key_file_path):
nasdaqdatalink.read_key(filename=api_key_file_path)
def main():
read_api_key(config.API_KEY_FILE_PATH)
generate_dataset(config.PAIR_NAMES_LIST_WITH_SOURCE,
config.TARGET_PAIR_NAME_WITH_SOURCE,
config.START_TIME,
config.END_TIME,
config.FORECAST_DAYS,
config.NUMBER_OF_CANDLES,
config.TRAIN_CSV_FILE_PATH,
config.TEST_CSV_FILE_PATH,
config.PRED_CSV_FILE_PATH,
config.CSV_DELIMITER,
config.TEST_SET_SIZE_RATIO,
config.SMA_LENGTHS_LIST,
config.APPLY_NOISE_AUGMENTATION,
config.AUGMENTATION_NOISE_INTERVAL,
config.TRAIN_DATASET_NEW_SIZE_COEFFICIENT,
config.USE_WMA_FOR_FORECAST_DAYS)
if __name__ == "__main__":
main()