(The parenthesis contains the according Numpy equivalence)
-
trax.tf_numpy.numpy.array_ops
trax.tf_numpy.numpy.array_ops.array
(np.array
)trax.tf_numpy.numpy.array_ops.asarray
(np.asarray
)trax.tf_numpy.numpy.array_ops.asanyarray
(np.asanyarray
)trax.tf_numpy.numpy.array_ops.ascontiguousarray
(np.ascontiguousarray
)trax.tf_numpy.numpy.array_ops.arange
(np.arange
)trax.tf_numpy.numpy.array_ops.all
(np.all
)trax.tf_numpy.numpy.array_ops.any
(np.any
)trax.tf_numpy.numpy.array_ops.around
(np.around
)trax.tf_numpy.numpy.array_ops.amax
(np.amax
)trax.tf_numpy.numpy.array_ops.amin
(np.amin
)trax.tf_numpy.numpy.array_ops.atleast_1d
(np.atleast_1d
)trax.tf_numpy.numpy.array_ops.atleast_2d
(np.atleast_2d
)trax.tf_numpy.numpy.array_ops.atleast_3d
(np.atleast_3d
)trax.tf_numpy.numpy.array_ops.broadcast_to
(np.broadcast_to
)trax.tf_numpy.numpy.array_ops.compress
(np.compress
)trax.tf_numpy.numpy.array_ops.copy
(np.copy
)trax.tf_numpy.numpy.array_ops.cumprod
(np.cumprod
)trax.tf_numpy.numpy.array_ops.cumsum
(np.cumsum
)trax.tf_numpy.numpy.array_ops.diag
(np.diag
)trax.tf_numpy.numpy.array_ops.diagonal
(np.diagonal
)trax.tf_numpy.numpy.array_ops.dstack
(np.dstack
)trax.tf_numpy.numpy.array_ops.diagflat
(np.diagflat
)trax.tf_numpy.numpy.array_ops.diag_indices
(np.diag_indices
)trax.tf_numpy.numpy.array_ops.expand_dims
(np.expand_dims
)trax.tf_numpy.numpy.array_ops.empty
(np.empty
)trax.tf_numpy.numpy.array_ops.empty_like
(np.empty_like
)trax.tf_numpy.numpy.array_ops.eye
(np.eye
)trax.tf_numpy.numpy.array_ops.full
(np.full
)trax.tf_numpy.numpy.array_ops.full_like
(np.full_like
)trax.tf_numpy.numpy.array_ops.flip
(np.flip
)trax.tf_numpy.numpy.array_ops.flipud
(np.flipud
)trax.tf_numpy.numpy.array_ops.fliplr
(np.fliplr
)trax.tf_numpy.numpy.array_ops.geomspace
(np.geomspace
)trax.tf_numpy.numpy.array_ops.hstack
(np.hstack
)trax.tf_numpy.numpy.array_ops.imag
(np.imag
)trax.tf_numpy.numpy.array_ops.isscalar
(np.isscalar
)trax.tf_numpy.numpy.array_ops.identity
(np.identity
)trax.tf_numpy.numpy.array_ops.ix_
(np.ix_
)trax.tf_numpy.numpy.array_ops.moveaxis
(np.moveaxis
)trax.tf_numpy.numpy.array_ops.mean
(np.mean
)trax.tf_numpy.numpy.array_ops.ndim
(np.ndim
)trax.tf_numpy.numpy.array_ops.nonzero
(np.nonzero
)trax.tf_numpy.numpy.array_ops.ones
(np.ones
)trax.tf_numpy.numpy.array_ops.ones_like
(np.ones_like
)trax.tf_numpy.numpy.array_ops.pad
(np.pad
)trax.tf_numpy.numpy.array_ops.prod
(np.prod
)trax.tf_numpy.numpy.array_ops.ravel
(np.ravel
)trax.tf_numpy.numpy.array_ops.real
(np.real
)trax.tf_numpy.numpy.array_ops.repeat
(np.repeat
)trax.tf_numpy.numpy.array_ops.reshape
(np.reshape
)trax.tf_numpy.numpy.array_ops.roll
(np.roll
)trax.tf_numpy.numpy.array_ops.rot90
(np.rot90
)trax.tf_numpy.numpy.array_ops.select
(np.select
)trax.tf_numpy.numpy.array_ops.shape
(np.shape
)trax.tf_numpy.numpy.array_ops.swapaxes
(np.swapaxes
)trax.tf_numpy.numpy.array_ops.split
(np.split
)trax.tf_numpy.numpy.array_ops.squeeze
(np.squeeze
)trax.tf_numpy.numpy.array_ops.sum
(np.sum
)trax.tf_numpy.numpy.array_ops.std
(np.std
)trax.tf_numpy.numpy.array_ops.stack
(np.stack
)trax.tf_numpy.numpy.array_ops.transpose
(np.transpose
)trax.tf_numpy.numpy.array_ops.take
(np.take
)trax.tf_numpy.numpy.array_ops.tri
(np.tri
)trax.tf_numpy.numpy.array_ops.tril
(np.tril
)trax.tf_numpy.numpy.array_ops.triu
(np.triu
)trax.tf_numpy.numpy.array_ops.var
(np.var
)trax.tf_numpy.numpy.array_ops.vander
(np.vander
)trax.tf_numpy.numpy.array_ops.vstack
(np.vstack
)trax.tf_numpy.numpy.array_ops.where
(np.where
)trax.tf_numpy.numpy.array_ops.zeros
(np.zeros
)trax.tf_numpy.numpy.array_ops.zeros_like
(np.zeros_like
)
-
trax.tf_numpy.numpy.arrays
trax.tf_numpy.numpy.arrays.ndarray
-
trax.tf_numpy.numpy.math_ops
trax.tf_numpy.numpy.math_ops.abs
(np.abs
)trax.tf_numpy.numpy.math_ops.absolute
(np.absolute
)trax.tf_numpy.numpy.math_ops.add
(np.add
)trax.tf_numpy.numpy.math_ops.angle
(np.angle
)trax.tf_numpy.numpy.math_ops.arctan2
(np.arctan2
)trax.tf_numpy.numpy.math_ops.arcsin
(np.arcsin
)trax.tf_numpy.numpy.math_ops.arccos
(np.arccos
)trax.tf_numpy.numpy.math_ops.arccosh
(np.arccosh
)trax.tf_numpy.numpy.math_ops.arctan
(np.arctan
)trax.tf_numpy.numpy.math_ops.arctanh
(np.arctanh
)trax.tf_numpy.numpy.math_ops.arcsinh
(np.arcsinh
)trax.tf_numpy.numpy.math_ops.array_equal
(np.array_equal
)trax.tf_numpy.numpy.math_ops.average
(np.average
)trax.tf_numpy.numpy.math_ops.argsort
(np.argsort
)trax.tf_numpy.numpy.math_ops.argmax
(np.argmin
)trax.tf_numpy.numpy.math_ops.argmin
(np.argmin
)trax.tf_numpy.numpy.math_ops.append
(np.append
)trax.tf_numpy.numpy.math_ops.allclose
(np.allclose
)trax.tf_numpy.numpy.math_ops.bitwise_and
(np.bitwise_and
)trax.tf_numpy.numpy.math_ops.bitwise_or
(np.bitwise_or
)trax.tf_numpy.numpy.math_ops.bitwise_xor
(np.bitwise_xor
)trax.tf_numpy.numpy.math_ops.bitwise_not
(np.bitwise_not
)trax.tf_numpy.numpy.math_ops.cbrt
(np.cbrt
)trax.tf_numpy.numpy.math_ops.ceil
(np.ceil
)trax.tf_numpy.numpy.math_ops.conj
(np.conj
)trax.tf_numpy.numpy.math_ops.count_nonzero
(np.count_nonzero
)trax.tf_numpy.numpy.math_ops.conjugate
(np.conjugate
)trax.tf_numpy.numpy.math_ops.concatenate
(np.concatenate
)trax.tf_numpy.numpy.math_ops.cos
(np.cos
)trax.tf_numpy.numpy.math_ops.cosh
(np.cosh
)trax.tf_numpy.numpy.math_ops.clip
(np.clip
)trax.tf_numpy.numpy.math_ops.cross
(np.cross
)trax.tf_numpy.numpy.math_ops.dot
(np.dot
)trax.tf_numpy.numpy.math_ops.divmod
(np.divmod
)trax.tf_numpy.numpy.math_ops.diff
(np.diff
)trax.tf_numpy.numpy.math_ops.deg2rad
(np.arctan
)trax.tf_numpy.numpy.math_ops.exp
(np.exp
)trax.tf_numpy.numpy.math_ops.exp2
(np.exp2
)trax.tf_numpy.numpy.math_ops.expm1
(np.expm1
)trax.tf_numpy.numpy.math_ops.equal
(np.equal
)trax.tf_numpy.numpy.math_ops.fabs
(np.fabs
)trax.tf_numpy.numpy.math_ops.fix
(np.fix
)trax.tf_numpy.numpy.math_ops.floor
(np.floor
)trax.tf_numpy.numpy.math_ops.floor_divide
(np.floor_divide
)trax.tf_numpy.numpy.math_ops.gcd
(np.gcd
)trax.tf_numpy.numpy.math_ops.greater
(np.greater
)trax.tf_numpy.numpy.math_ops.greater_equal
(np.greater_equal
)trax.tf_numpy.numpy.math_ops.heaviside
(np.heaviside
)trax.tf_numpy.numpy.math_ops.hypot
(np.hypot
)trax.tf_numpy.numpy.math_ops.isclose
(np.isclose
)trax.tf_numpy.numpy.math_ops.inner
(np.inner
)trax.tf_numpy.numpy.math_ops.iscomplete
(np.iscomplete
)trax.tf_numpy.numpy.math_ops.isreal
(np.isreal
)trax.tf_numpy.numpy.math_ops.isrealobj
(np.isrealobj
)trax.tf_numpy.numpy.math_ops.iscomplexobj
(np.iscomplexobj
)trax.tf_numpy.numpy.math_ops.isnan
(np.isnan
)trax.tf_numpy.numpy.math_ops.isfinite
(np.isfinite
)trax.tf_numpy.numpy.math_ops.isinf
(np.isinf
)trax.tf_numpy.numpy.math_ops.isneginf
(np.isneginf
)trax.tf_numpy.numpy.math_ops.isposinf
(np.isposinf
)trax.tf_numpy.numpy.math_ops.kron
(np.kron
)trax.tf_numpy.numpy.math_ops.lcm
(np.lcm
)trax.tf_numpy.numpy.math_ops.less
(np.less
)trax.tf_numpy.numpy.math_ops.less_equal
(np.less_equal
)trax.tf_numpy.numpy.math_ops.log
(np.log
)trax.tf_numpy.numpy.math_ops.log2
(np.log2
)trax.tf_numpy.numpy.math_ops.log10
(np.log10
)trax.tf_numpy.numpy.math_ops.log1p
(np.log1p
)trax.tf_numpy.numpy.math_ops.logaddexp
(np.logaddexp
)trax.tf_numpy.numpy.math_ops.logaddexp2
(np.logaddexp2
)trax.tf_numpy.numpy.math_ops.logical_and
(np.logical_and
)trax.tf_numpy.numpy.math_ops.logical_or
(np.logical_or
)trax.tf_numpy.numpy.math_ops.logical_xor
(np.logical_xor
)trax.tf_numpy.numpy.math_ops.logical_not
(np.logical_not
)trax.tf_numpy.numpy.math_ops.linspace
(np.linspace
)trax.tf_numpy.numpy.math_ops.logspace
(np.logspace
)trax.tf_numpy.numpy.math_ops.minimum
(np.minimum
)trax.tf_numpy.numpy.math_ops.maximum
(np.maximum
)trax.tf_numpy.numpy.math_ops.matmul
(np.matmul
)trax.tf_numpy.numpy.math_ops.mod
(np.mod
)trax.tf_numpy.numpy.math_ops.meshgrid
(np.meshgrid
)trax.tf_numpy.numpy.math_ops.multiply
(np.multiply
)trax.tf_numpy.numpy.math_ops.negative
(np.negative
)trax.tf_numpy.numpy.math_ops.nanmean
(np.nanmean
)trax.tf_numpy.numpy.math_ops.not_equal
(np.not_equal
)trax.tf_numpy.numpy.math_ops.nextafter
(np.nextafter
)trax.tf_numpy.numpy.math_ops.outer
(np.outer
)trax.tf_numpy.numpy.math_ops.ptp
(np.ptp
)trax.tf_numpy.numpy.math_ops.power
(np.power
)trax.tf_numpy.numpy.math_ops.polyval
(np.polyval
)trax.tf_numpy.numpy.math_ops.postive
(np.positive
)trax.tf_numpy.numpy.math_ops.reciprocal
(np.reciprocal
)trax.tf_numpy.numpy.math_ops.rad2deg
(np.rad2deg
)trax.tf_numpy.numpy.math_ops.subtract
(np.subtract
)trax.tf_numpy.numpy.math_ops.sin
(np.sin
)trax.tf_numpy.numpy.math_ops.sinc
(np.sinc
)trax.tf_numpy.numpy.math_ops.sqrt
(np.sqrt
)trax.tf_numpy.numpy.math_ops.square
(np.square
)trax.tf_numpy.numpy.math_ops.sort
(np.sort
)trax.tf_numpy.numpy.math_ops.signbit
(np.signbit
)trax.tf_numpy.numpy.math_ops.sinh
(np.sinh
)trax.tf_numpy.numpy.math_ops.tan
(np.tan
)trax.tf_numpy.numpy.math_ops.tanh
(np.tanh
)trax.tf_numpy.numpy.math_ops.trace
(np.trace
)trax.tf_numpy.numpy.math_ops.tensordot
(np.tensordot
)trax.tf_numpy.numpy.math_ops.tile
(np.tile
)trax.tf_numpy.numpy.math_ops.true_divide
(np.true_divide
)
-
trax.tf_numpy.numpy.random
trax.tf_numpy.numpy.random.seed
(np.random.seed
)trax.tf_numpy.numpy.random.randn
(np.random.randn
)trax.tf_numpy.numpy.random.DEFAULT_RANDN_DTYPE
-
trax.tf_numpy.numpy.utils
trax.tf_numpy.numpy.utils.np_doc