Skip to content

Latest commit

 

History

History
198 lines (191 loc) · 22.9 KB

TF_Numpy_API.md

File metadata and controls

198 lines (191 loc) · 22.9 KB

Current TensorFlow Numpy API (in trax)

(The parenthesis contains the according Numpy equivalence)

  1. trax.tf_numpy.numpy.array_ops

    • trax.tf_numpy.numpy.array_ops.array (np.array)
    • trax.tf_numpy.numpy.array_ops.asarray (np.asarray)
    • trax.tf_numpy.numpy.array_ops.asanyarray (np.asanyarray)
    • trax.tf_numpy.numpy.array_ops.ascontiguousarray (np.ascontiguousarray)
    • trax.tf_numpy.numpy.array_ops.arange (np.arange)
    • trax.tf_numpy.numpy.array_ops.all (np.all)
    • trax.tf_numpy.numpy.array_ops.any (np.any)
    • trax.tf_numpy.numpy.array_ops.around (np.around)
    • trax.tf_numpy.numpy.array_ops.amax (np.amax)
    • trax.tf_numpy.numpy.array_ops.amin (np.amin)
    • trax.tf_numpy.numpy.array_ops.atleast_1d (np.atleast_1d)
    • trax.tf_numpy.numpy.array_ops.atleast_2d (np.atleast_2d)
    • trax.tf_numpy.numpy.array_ops.atleast_3d (np.atleast_3d)
    • trax.tf_numpy.numpy.array_ops.broadcast_to (np.broadcast_to)
    • trax.tf_numpy.numpy.array_ops.compress (np.compress)
    • trax.tf_numpy.numpy.array_ops.copy (np.copy)
    • trax.tf_numpy.numpy.array_ops.cumprod (np.cumprod)
    • trax.tf_numpy.numpy.array_ops.cumsum (np.cumsum)
    • trax.tf_numpy.numpy.array_ops.diag (np.diag)
    • trax.tf_numpy.numpy.array_ops.diagonal (np.diagonal)
    • trax.tf_numpy.numpy.array_ops.dstack (np.dstack)
    • trax.tf_numpy.numpy.array_ops.diagflat (np.diagflat)
    • trax.tf_numpy.numpy.array_ops.diag_indices (np.diag_indices)
    • trax.tf_numpy.numpy.array_ops.expand_dims (np.expand_dims)
    • trax.tf_numpy.numpy.array_ops.empty (np.empty)
    • trax.tf_numpy.numpy.array_ops.empty_like (np.empty_like)
    • trax.tf_numpy.numpy.array_ops.eye (np.eye)
    • trax.tf_numpy.numpy.array_ops.full (np.full)
    • trax.tf_numpy.numpy.array_ops.full_like (np.full_like)
    • trax.tf_numpy.numpy.array_ops.flip (np.flip)
    • trax.tf_numpy.numpy.array_ops.flipud (np.flipud)
    • trax.tf_numpy.numpy.array_ops.fliplr (np.fliplr)
    • trax.tf_numpy.numpy.array_ops.geomspace (np.geomspace)
    • trax.tf_numpy.numpy.array_ops.hstack (np.hstack)
    • trax.tf_numpy.numpy.array_ops.imag (np.imag)
    • trax.tf_numpy.numpy.array_ops.isscalar (np.isscalar)
    • trax.tf_numpy.numpy.array_ops.identity (np.identity)
    • trax.tf_numpy.numpy.array_ops.ix_ (np.ix_)
    • trax.tf_numpy.numpy.array_ops.moveaxis (np.moveaxis)
    • trax.tf_numpy.numpy.array_ops.mean (np.mean)
    • trax.tf_numpy.numpy.array_ops.ndim (np.ndim)
    • trax.tf_numpy.numpy.array_ops.nonzero (np.nonzero)
    • trax.tf_numpy.numpy.array_ops.ones (np.ones)
    • trax.tf_numpy.numpy.array_ops.ones_like (np.ones_like)
    • trax.tf_numpy.numpy.array_ops.pad (np.pad)
    • trax.tf_numpy.numpy.array_ops.prod (np.prod)
    • trax.tf_numpy.numpy.array_ops.ravel (np.ravel)
    • trax.tf_numpy.numpy.array_ops.real (np.real)
    • trax.tf_numpy.numpy.array_ops.repeat (np.repeat)
    • trax.tf_numpy.numpy.array_ops.reshape (np.reshape)
    • trax.tf_numpy.numpy.array_ops.roll (np.roll)
    • trax.tf_numpy.numpy.array_ops.rot90 (np.rot90)
    • trax.tf_numpy.numpy.array_ops.select (np.select)
    • trax.tf_numpy.numpy.array_ops.shape (np.shape)
    • trax.tf_numpy.numpy.array_ops.swapaxes (np.swapaxes)
    • trax.tf_numpy.numpy.array_ops.split (np.split)
    • trax.tf_numpy.numpy.array_ops.squeeze (np.squeeze)
    • trax.tf_numpy.numpy.array_ops.sum (np.sum)
    • trax.tf_numpy.numpy.array_ops.std (np.std)
    • trax.tf_numpy.numpy.array_ops.stack (np.stack)
    • trax.tf_numpy.numpy.array_ops.transpose (np.transpose)
    • trax.tf_numpy.numpy.array_ops.take (np.take)
    • trax.tf_numpy.numpy.array_ops.tri (np.tri)
    • trax.tf_numpy.numpy.array_ops.tril (np.tril)
    • trax.tf_numpy.numpy.array_ops.triu (np.triu)
    • trax.tf_numpy.numpy.array_ops.var (np.var)
    • trax.tf_numpy.numpy.array_ops.vander (np.vander)
    • trax.tf_numpy.numpy.array_ops.vstack (np.vstack)
    • trax.tf_numpy.numpy.array_ops.where (np.where)
    • trax.tf_numpy.numpy.array_ops.zeros (np.zeros)
    • trax.tf_numpy.numpy.array_ops.zeros_like (np.zeros_like)
  2. trax.tf_numpy.numpy.arrays

    • trax.tf_numpy.numpy.arrays.ndarray
  3. trax.tf_numpy.numpy.math_ops

    • trax.tf_numpy.numpy.math_ops.abs (np.abs)
    • trax.tf_numpy.numpy.math_ops.absolute (np.absolute)
    • trax.tf_numpy.numpy.math_ops.add (np.add)
    • trax.tf_numpy.numpy.math_ops.angle (np.angle)
    • trax.tf_numpy.numpy.math_ops.arctan2 (np.arctan2)
    • trax.tf_numpy.numpy.math_ops.arcsin (np.arcsin)
    • trax.tf_numpy.numpy.math_ops.arccos (np.arccos)
    • trax.tf_numpy.numpy.math_ops.arccosh (np.arccosh)
    • trax.tf_numpy.numpy.math_ops.arctan (np.arctan)
    • trax.tf_numpy.numpy.math_ops.arctanh (np.arctanh)
    • trax.tf_numpy.numpy.math_ops.arcsinh (np.arcsinh)
    • trax.tf_numpy.numpy.math_ops.array_equal (np.array_equal)
    • trax.tf_numpy.numpy.math_ops.average (np.average)
    • trax.tf_numpy.numpy.math_ops.argsort (np.argsort)
    • trax.tf_numpy.numpy.math_ops.argmax (np.argmin)
    • trax.tf_numpy.numpy.math_ops.argmin (np.argmin)
    • trax.tf_numpy.numpy.math_ops.append (np.append)
    • trax.tf_numpy.numpy.math_ops.allclose (np.allclose)
    • trax.tf_numpy.numpy.math_ops.bitwise_and (np.bitwise_and)
    • trax.tf_numpy.numpy.math_ops.bitwise_or (np.bitwise_or)
    • trax.tf_numpy.numpy.math_ops.bitwise_xor (np.bitwise_xor)
    • trax.tf_numpy.numpy.math_ops.bitwise_not (np.bitwise_not)
    • trax.tf_numpy.numpy.math_ops.cbrt (np.cbrt)
    • trax.tf_numpy.numpy.math_ops.ceil (np.ceil)
    • trax.tf_numpy.numpy.math_ops.conj (np.conj)
    • trax.tf_numpy.numpy.math_ops.count_nonzero (np.count_nonzero)
    • trax.tf_numpy.numpy.math_ops.conjugate (np.conjugate)
    • trax.tf_numpy.numpy.math_ops.concatenate (np.concatenate)
    • trax.tf_numpy.numpy.math_ops.cos (np.cos)
    • trax.tf_numpy.numpy.math_ops.cosh (np.cosh)
    • trax.tf_numpy.numpy.math_ops.clip (np.clip)
    • trax.tf_numpy.numpy.math_ops.cross (np.cross)
    • trax.tf_numpy.numpy.math_ops.dot (np.dot)
    • trax.tf_numpy.numpy.math_ops.divmod (np.divmod)
    • trax.tf_numpy.numpy.math_ops.diff (np.diff)
    • trax.tf_numpy.numpy.math_ops.deg2rad (np.arctan)
    • trax.tf_numpy.numpy.math_ops.exp (np.exp)
    • trax.tf_numpy.numpy.math_ops.exp2 (np.exp2)
    • trax.tf_numpy.numpy.math_ops.expm1 (np.expm1)
    • trax.tf_numpy.numpy.math_ops.equal (np.equal)
    • trax.tf_numpy.numpy.math_ops.fabs (np.fabs)
    • trax.tf_numpy.numpy.math_ops.fix (np.fix)
    • trax.tf_numpy.numpy.math_ops.floor (np.floor)
    • trax.tf_numpy.numpy.math_ops.floor_divide (np.floor_divide)
    • trax.tf_numpy.numpy.math_ops.gcd (np.gcd)
    • trax.tf_numpy.numpy.math_ops.greater (np.greater)
    • trax.tf_numpy.numpy.math_ops.greater_equal (np.greater_equal)
    • trax.tf_numpy.numpy.math_ops.heaviside (np.heaviside)
    • trax.tf_numpy.numpy.math_ops.hypot (np.hypot)
    • trax.tf_numpy.numpy.math_ops.isclose (np.isclose)
    • trax.tf_numpy.numpy.math_ops.inner (np.inner)
    • trax.tf_numpy.numpy.math_ops.iscomplete (np.iscomplete)
    • trax.tf_numpy.numpy.math_ops.isreal (np.isreal)
    • trax.tf_numpy.numpy.math_ops.isrealobj (np.isrealobj)
    • trax.tf_numpy.numpy.math_ops.iscomplexobj (np.iscomplexobj)
    • trax.tf_numpy.numpy.math_ops.isnan (np.isnan)
    • trax.tf_numpy.numpy.math_ops.isfinite (np.isfinite)
    • trax.tf_numpy.numpy.math_ops.isinf (np.isinf)
    • trax.tf_numpy.numpy.math_ops.isneginf (np.isneginf)
    • trax.tf_numpy.numpy.math_ops.isposinf (np.isposinf)
    • trax.tf_numpy.numpy.math_ops.kron (np.kron)
    • trax.tf_numpy.numpy.math_ops.lcm (np.lcm)
    • trax.tf_numpy.numpy.math_ops.less (np.less)
    • trax.tf_numpy.numpy.math_ops.less_equal (np.less_equal)
    • trax.tf_numpy.numpy.math_ops.log (np.log)
    • trax.tf_numpy.numpy.math_ops.log2 (np.log2)
    • trax.tf_numpy.numpy.math_ops.log10 (np.log10)
    • trax.tf_numpy.numpy.math_ops.log1p (np.log1p)
    • trax.tf_numpy.numpy.math_ops.logaddexp (np.logaddexp)
    • trax.tf_numpy.numpy.math_ops.logaddexp2 (np.logaddexp2)
    • trax.tf_numpy.numpy.math_ops.logical_and (np.logical_and)
    • trax.tf_numpy.numpy.math_ops.logical_or (np.logical_or)
    • trax.tf_numpy.numpy.math_ops.logical_xor (np.logical_xor)
    • trax.tf_numpy.numpy.math_ops.logical_not (np.logical_not)
    • trax.tf_numpy.numpy.math_ops.linspace (np.linspace)
    • trax.tf_numpy.numpy.math_ops.logspace (np.logspace)
    • trax.tf_numpy.numpy.math_ops.minimum (np.minimum)
    • trax.tf_numpy.numpy.math_ops.maximum (np.maximum)
    • trax.tf_numpy.numpy.math_ops.matmul (np.matmul)
    • trax.tf_numpy.numpy.math_ops.mod (np.mod)
    • trax.tf_numpy.numpy.math_ops.meshgrid (np.meshgrid)
    • trax.tf_numpy.numpy.math_ops.multiply (np.multiply)
    • trax.tf_numpy.numpy.math_ops.negative (np.negative)
    • trax.tf_numpy.numpy.math_ops.nanmean (np.nanmean)
    • trax.tf_numpy.numpy.math_ops.not_equal (np.not_equal)
    • trax.tf_numpy.numpy.math_ops.nextafter (np.nextafter)
    • trax.tf_numpy.numpy.math_ops.outer (np.outer)
    • trax.tf_numpy.numpy.math_ops.ptp (np.ptp)
    • trax.tf_numpy.numpy.math_ops.power (np.power)
    • trax.tf_numpy.numpy.math_ops.polyval (np.polyval)
    • trax.tf_numpy.numpy.math_ops.postive (np.positive)
    • trax.tf_numpy.numpy.math_ops.reciprocal (np.reciprocal)
    • trax.tf_numpy.numpy.math_ops.rad2deg (np.rad2deg)
    • trax.tf_numpy.numpy.math_ops.subtract (np.subtract)
    • trax.tf_numpy.numpy.math_ops.sin (np.sin)
    • trax.tf_numpy.numpy.math_ops.sinc (np.sinc)
    • trax.tf_numpy.numpy.math_ops.sqrt (np.sqrt)
    • trax.tf_numpy.numpy.math_ops.square (np.square)
    • trax.tf_numpy.numpy.math_ops.sort (np.sort)
    • trax.tf_numpy.numpy.math_ops.signbit (np.signbit)
    • trax.tf_numpy.numpy.math_ops.sinh (np.sinh)
    • trax.tf_numpy.numpy.math_ops.tan (np.tan)
    • trax.tf_numpy.numpy.math_ops.tanh (np.tanh )
    • trax.tf_numpy.numpy.math_ops.trace (np.trace)
    • trax.tf_numpy.numpy.math_ops.tensordot (np.tensordot)
    • trax.tf_numpy.numpy.math_ops.tile (np.tile)
    • trax.tf_numpy.numpy.math_ops.true_divide (np.true_divide)
  4. trax.tf_numpy.numpy.random

    • trax.tf_numpy.numpy.random.seed (np.random.seed)
    • trax.tf_numpy.numpy.random.randn (np.random.randn)
    • trax.tf_numpy.numpy.random.DEFAULT_RANDN_DTYPE
  5. trax.tf_numpy.numpy.utils

    • trax.tf_numpy.numpy.utils.np_doc