-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain-ambifc.py
195 lines (159 loc) · 7.68 KB
/
train-ambifc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""
Train models for AmbiFC. They will automatically get evaluated after training.
Usage:
train-ambifc.py <config> [--overwrite]
"""
import torch
import os
import shutil
from os.path import join
from typing import Dict, List, Optional
from docopt import docopt
from transformers import AutoTokenizer, Trainer
from datasets import Dataset
from evidence_eval_ambifc import evaluate_all_evidence_prediction
from pass_eval_ambifc import evaluate_all_veracity_prediction
from predict_ambifc import predict
from ambifc.modeling.conf.config import Config
from ambifc.modeling.conf.labels import get_label2int
from ambifc.modeling.conf.model_config import ModelConfig
from ambifc.modeling.conf.train_config import TrainConfig
from ambifc.modeling.conf.train_data_config import TrainDataConfig
from ambifc.modeling.dataset.get_dataset import get_dataset
from ambifc.modeling.dataset.samples import get_samples_for_ambifc_subset
from ambifc.modeling.distillation.distillation_trainer import DistillationTrainer
from ambifc.modeling.training.metrics_init import AmbiFCTrainMetrics, get_ambi_metrics_for_config
from ambifc.modeling.training.model_init import AmbiFCModelInit
from ambifc.modeling.training.training_arguments import get_training_args
from ambifc.util.fileutil import read_json
def move_checkpoint_to_model_directory(config: Config) -> None:
"""
Moves the checkpoint to the model directory (avoid having an extra checkpoint directory with arbitrary name).
"""
# Find the only existing checkpoint
directory: str = config.model_config.get_model_dir()
print('Looking in this directory:', directory)
checkpoints: List[str] = os.listdir(directory)
print('Found the following checkpoints (and expects 1)', checkpoints)
assert len(checkpoints) == 1
checkpoint_directory: str = join(directory, checkpoints[0])
# Move the checkpoint
for file in os.listdir(checkpoint_directory):
shutil.move(join(checkpoint_directory, file), join(directory, file))
shutil.rmtree(checkpoint_directory)
def train(config: Config, overwrite: bool) -> None:
"""
Train a model based on the defined configuration.
:param config: Contains all information of the model and used data.
:param overwrite: Overwrite an existing already trained model.
"""
assert torch.cuda.is_available()
# Init Tokenizer
tokenizer: AutoTokenizer = AutoTokenizer.from_pretrained(config.model_config.get_model_name())
# Init Data (certain / uncertain / all AmbiFC)
subset: str = config.train_data_config.get_ambifc_subset()
data_dir: str = config.train_data_config.get_data_directory()
# If training data should be reduced to a limited number of samples.
max_num_training: Optional[int] = None
max_num_shuffle_seed: Optional[int] = None
if config.training_config.is_limit_number_training_samples():
max_num_training, max_num_shuffle_seed = config.training_config.get_max_number_training_samples_params()
# Get all raw training instances
training_samples: List[Dict] = get_samples_for_ambifc_subset(
subset, 'train', data_dir, max_num=max_num_training, max_num_shuffle_seed=max_num_shuffle_seed
)
print('Loaded', len(training_samples))
print('CHECK ME')
# Convert training instances into a dataset.
dataset_train: Dataset = get_dataset(
training_samples, config, tokenizer
)
# Get dev dataset
dataset_dev: Dataset = get_dataset(
get_samples_for_ambifc_subset(subset, 'dev', data_dir), config, tokenizer
)
# Init wrapper for model initialization.
model_init = AmbiFCModelInit(
model_name_or_path=config.model_config.get_model_name(),
label2id=get_label2int(config.model_config),
output_type=config.model_config.get_output_type(),
set_to_eval=False
)
# Get the metrics needed during training - they differ based on task and subset.
train_metrics: AmbiFCTrainMetrics = get_ambi_metrics_for_config(
config.model_config, get_label2int(config.model_config)
)
# For distillation use a custom trainer that implements soft_cross_entropy loss.
if config.model_config.get_output_type() == ModelConfig.OUTPUT_DISTRIBUTION:
trainer: Trainer = DistillationTrainer(
model_init=model_init.model_init,
args=get_training_args(config, overwrite=overwrite),
compute_metrics=train_metrics.compute_metrics,
train_dataset=dataset_train,
eval_dataset=dataset_dev,
tokenizer=tokenizer
)
else:
trainer: Trainer = Trainer(
model_init=model_init.model_init,
args=get_training_args(config, overwrite=overwrite),
compute_metrics=train_metrics.compute_metrics,
train_dataset=dataset_train,
eval_dataset=dataset_dev,
tokenizer=tokenizer
)
trainer.train()
print('Done training. Move model checkpoint to top level directory ...')
move_checkpoint_to_model_directory(config)
print('Done.')
def main(args: Dict):
# Read config and do model training
config: Config = Config(read_json(args['<config>']))
overwrite: bool = args['--overwrite']
train(config, overwrite)
# Always predict post training. Soft label subset (AmbiFC) includes all used samples.
for ambifc_subset in [TrainDataConfig.SUBSET_ALL_AMBIFC]:
for split in ['dev', 'test']:
# Evidence predictions (T1)
if config.model_config.get_model_task_type() == ModelConfig.TYPE_EVIDENCE:
predict(
config=config, split=split, overwrite=overwrite, ambifc_subset=ambifc_subset
)
pred_directory: str = join(config.get_prediction_directory())
prediction_file: str = f'predictions.{split}.{ambifc_subset}.evidence.jsonl'
# Special case: When predicting the evidence probability or evidence distribution, selected evidence
# is only detected after selecting a threshold.
if not config.model_config.get_output_type() in {
ModelConfig.OUTPUT_BINARY_EVIDENCE_PROBABILITY,
ModelConfig.OUTPUT_DISTRIBUTION
}:
evaluate_all_evidence_prediction(
prediction_directory=pred_directory,
predictions_file=prediction_file,
split=split,
overwrite=overwrite
)
# Veracity prediction (T2) - predictions are based on either full-text or oracle evidence.
# Predictions based on selected evidence must be made separately.
else:
if config.training_config.get_evidence_sampling_strategy() == TrainConfig.EVIDENCE_SELECTION_FULL:
sentence_predictions_for_eval: str = 'fulltext'
else:
sentence_predictions_for_eval: str = 'oracle'
predict(
config=config, split=split, overwrite=overwrite,
sentence_predictions=sentence_predictions_for_eval,
ambifc_subset=ambifc_subset
)
pred_directory: str = join(config.get_prediction_directory())
prediction_file: str = f'predictions.{split}.{ambifc_subset}.veracity_{sentence_predictions_for_eval}-ev.jsonl'
evaluate_all_veracity_prediction(
prediction_directory=pred_directory,
predictions_file=prediction_file,
split=split,
ambifc_subset=ambifc_subset,
overwrite=overwrite
)
if __name__ == "__main__":
args = docopt(__doc__)
main(args)