-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathAPIs.py
202 lines (151 loc) · 5.49 KB
/
APIs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import numpy as np
import requests
import yaml
import pyloudnorm as pyln
from scipy.io.wavfile import write
import torchaudio
from retrying import retry
from utils import get_service_port, get_service_url
os.environ['OPENBLAS_NUM_THREADS'] = '1'
SAMPLE_RATE = 32000
with open('config.yaml', 'r') as file:
config = yaml.safe_load(file)
service_port = get_service_port()
localhost_addr = get_service_url()
enable_sr = config['Speech-Restoration']['Enable']
def LOUDNESS_NORM(audio, sr=32000, volumn=-25):
# peak normalize audio to -1 dB
peak_normalized_audio = pyln.normalize.peak(audio, -10.0)
# measure the loudness first
meter = pyln.Meter(sr) # create BS.1770 meter
loudness = meter.integrated_loudness(peak_normalized_audio)
# loudness normalize audio to -12 dB LUFS
normalized_audio = pyln.normalize.loudness(peak_normalized_audio, loudness, volumn)
return normalized_audio
def WRITE_AUDIO(wav, name=None, sr=SAMPLE_RATE):
"""
function: write audio numpy to .wav file
@params:
wav: np.array [samples]
"""
if name is None:
name = 'output.wav'
if len(wav.shape) > 1:
wav = wav[0]
# declipping
max_value = np.max(np.abs(wav))
if max_value > 1:
wav *= 0.9 / max_value
# write audio
write(name, sr, np.round(wav*32767).astype(np.int16))
def READ_AUDIO_NUMPY(wav, sr=SAMPLE_RATE):
"""
function: read audio numpy
return: np.array [samples]
"""
waveform, sample_rate = torchaudio.load(wav)
if sample_rate != sr:
waveform = torchaudio.functional.resample(waveform, orig_freq=sample_rate, new_freq=sr)
wav_numpy = waveform[0].numpy()
return wav_numpy
def MIX(wavs=[['1.wav', 0.], ['2.wav', 10.]], out_wav='out.wav', sr=SAMPLE_RATE):
"""
wavs:[[wav_name, absolute_offset], ...]
"""
max_length = max([int(wav[1]*sr + len(READ_AUDIO_NUMPY(wav[0]))) for wav in wavs])
template_wav = np.zeros(max_length)
for wav in wavs:
cur_name, cur_offset = wav
cur_wav = READ_AUDIO_NUMPY(cur_name)
cur_len = len(cur_wav)
cur_offset = int(cur_offset * sr)
# mix
template_wav[cur_offset:cur_offset+cur_len] += cur_wav
WRITE_AUDIO(template_wav, name=out_wav)
def CAT(wavs, out_wav='out.wav'):
"""
wavs: List of wav file ['1.wav', '2.wav', ...]
"""
wav_num = len(wavs)
segment0 = READ_AUDIO_NUMPY(wavs[0])
cat_wav = segment0
if wav_num > 1:
for i in range(1, wav_num):
next_wav = READ_AUDIO_NUMPY(wavs[i])
cat_wav = np.concatenate((cat_wav, next_wav), axis=-1)
WRITE_AUDIO(cat_wav, name=out_wav)
def COMPUTE_LEN(wav):
wav= READ_AUDIO_NUMPY(wav)
return len(wav) / 32000
@retry(stop_max_attempt_number=5, wait_fixed=2000)
def TTM(text, length=10, volume=-28, out_wav='out.wav'):
url = f'http://{localhost_addr}:{service_port}/generate_music'
data = {
'text': f'{text}',
'length': f'{length}',
'volume': f'{volume}',
'output_wav': f'{out_wav}',
}
response = requests.post(url, json=data)
if response.status_code == 200:
print('Success:', response.json()['message'])
else:
print('Error:', response.json()['API error'])
raise RuntimeError(response.json()['API error'])
@retry(stop_max_attempt_number=5, wait_fixed=2000)
def TTA(text, length=5, volume=-35, out_wav='out.wav'):
url = f'http://{localhost_addr}:{service_port}/generate_audio'
data = {
'text': f'{text}',
'length': f'{length}',
'volume': f'{volume}',
'output_wav': f'{out_wav}',
}
response = requests.post(url, json=data)
if response.status_code == 200:
print('Success:', response.json()['message'])
else:
print('Error:', response.json()['API error'])
raise RuntimeError(response.json()['API error'])
@retry(stop_max_attempt_number=5, wait_fixed=2000)
def TTS(text, volume=-20, out_wav='out.wav', enhanced=enable_sr, speaker_id='', speaker_npz=''):
url = f'http://{localhost_addr}:{service_port}/generate_speech'
data = {
'text': f'{text}',
'speaker_id': f'{speaker_id}',
'speaker_npz': f'{speaker_npz}',
'volume': f'{volume}',
'output_wav': f'{out_wav}',
}
response = requests.post(url, json=data)
if response.status_code == 200:
print('Success:', response.json()['message'])
else:
print('Error:', response.json()['API error'])
raise RuntimeError(response.json()['API error'])
if enhanced:
SR(processfile=out_wav)
@retry(stop_max_attempt_number=5, wait_fixed=2000)
def SR(processfile):
url = f'http://{localhost_addr}:{service_port}/fix_audio'
data = {'processfile': f'{processfile}'}
response = requests.post(url, json=data)
if response.status_code == 200:
print('Success:', response.json()['message'])
else:
print('Error:', response.json()['API error'])
raise RuntimeError(response.json()['API error'])
@retry(stop_max_attempt_number=5, wait_fixed=2000)
def VP(wav_path, out_dir):
url = f'http://{localhost_addr}:{service_port}/parse_voice'
data = {
'wav_path': f'{wav_path}',
'out_dir':f'{out_dir}'
}
response = requests.post(url, json=data)
if response.status_code == 200:
print('Success:', response.json()['message'])
else:
print('Error:', response.json()['API error'])
raise RuntimeError(response.json()['API error'])