|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import torch\n", |
| 10 | + "from torch import nn\n", |
| 11 | + "from torch.optim import SGD\n", |
| 12 | + "from matplotlib import pyplot as plt\n", |
| 13 | + "from matplotlib import patches\n", |
| 14 | + "import matplotlib as mpl\n", |
| 15 | + "import numpy as np" |
| 16 | + ] |
| 17 | + }, |
| 18 | + { |
| 19 | + "cell_type": "code", |
| 20 | + "execution_count": null, |
| 21 | + "metadata": {}, |
| 22 | + "outputs": [], |
| 23 | + "source": [ |
| 24 | + "plt.style.use(['dark_background', 'bmh'])\n", |
| 25 | + "plt.rc('axes', facecolor='k')\n", |
| 26 | + "plt.rc('figure', facecolor='k', figsize=(10, 6), dpi=100) # (17, 10)\n", |
| 27 | + "plt.rc('savefig', bbox='tight')\n", |
| 28 | + "plt.rc('axes', labelsize=36)\n", |
| 29 | + "plt.rc('legend', fontsize=24)\n", |
| 30 | + "plt.rc('text', usetex=True)\n", |
| 31 | + "plt.rcParams['text.latex.preamble'] = [r'\\usepackage{bm}']\n", |
| 32 | + "plt.rc('lines', markersize=10)" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "markdown", |
| 37 | + "metadata": {}, |
| 38 | + "source": [ |
| 39 | + "The state transition equation is the following:\n", |
| 40 | + "\n", |
| 41 | + "$$\\def \\vx {\\boldsymbol{\\color{Plum}{x}}}\n", |
| 42 | + "\\def \\vu {\\boldsymbol{\\color{orange}{u}}}\n", |
| 43 | + "\\dot{\\vx} = f(\\vx, \\vu) \\quad\n", |
| 44 | + "\\left\\{\n", |
| 45 | + "\\begin{array}{l}\n", |
| 46 | + "\\dot{x} = s \\cos \\theta \\\\\n", |
| 47 | + "\\dot{y} = s \\sin \\theta \\\\\n", |
| 48 | + "\\dot{\\theta} = \\frac{s}{L} \\tan \\phi \\\\\n", |
| 49 | + "\\dot{s} = a\n", |
| 50 | + "\\end{array}\n", |
| 51 | + "\\right. \\quad\n", |
| 52 | + "\\vx = (x\\;y\\;\\theta\\;s) \\quad\n", |
| 53 | + "\\vu = (\\phi\\;a)\n", |
| 54 | + "$$" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": null, |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [], |
| 62 | + "source": [ |
| 63 | + "def f(x, u, t=None):\n", |
| 64 | + " \"\"\"\n", |
| 65 | + " Kinematic model for tricycle\n", |
| 66 | + " ẋ(t) = f[x(t), u(t), t]\n", |
| 67 | + " x: states (x, y, θ, s)\n", |
| 68 | + " u: control\n", |
| 69 | + " t: time\n", |
| 70 | + " f: kinematic model\n", |
| 71 | + " ẋ = dx/dt\n", |
| 72 | + " x' = x + f(x, u, t) * dt\n", |
| 73 | + " \"\"\"\n", |
| 74 | + " L = 1 # m\n", |
| 75 | + " x, y, θ, s = x\n", |
| 76 | + " \n", |
| 77 | + " ϕ, a = u\n", |
| 78 | + " f = torch.zeros(4)\n", |
| 79 | + " f[0] = s * torch.cos(θ)\n", |
| 80 | + " f[1] = s * torch.sin(θ)\n", |
| 81 | + " f[2] = s / L * torch.tan(ϕ)\n", |
| 82 | + " f[3] = a\n", |
| 83 | + " return f" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": null, |
| 89 | + "metadata": {}, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "def draw_car(ax, x, y, θ, width=0.4, length=1.0):\n", |
| 93 | + " rect = patches.Rectangle(\n", |
| 94 | + " (x, y - width / 2), \n", |
| 95 | + " length,\n", |
| 96 | + " width,\n", |
| 97 | + " transform=mpl.transforms.Affine2D().rotate_around(*(x, y), θ) + ax.transData,\n", |
| 98 | + " alpha=0.8,\n", |
| 99 | + " fill=False,\n", |
| 100 | + " ec='grey',\n", |
| 101 | + " )\n", |
| 102 | + " ax.add_patch(rect)\n", |
| 103 | + " \n", |
| 104 | + "def plot_τ(ax, τ, car=False, ax_lims=None):\n", |
| 105 | + " \"\"\"\n", |
| 106 | + " Plot trajectory of vehicles\n", |
| 107 | + " ax_lims is a tuple of two tuples ((x_lim_left, x_lim_right), (y_lim_bottom, y_lim_top))\n", |
| 108 | + " \"\"\"\n", |
| 109 | + " if ax_lims is None:\n", |
| 110 | + " ax_lims = ((-1, 7), (-2, 2))\n", |
| 111 | + " ax.plot(τ[:,0], τ[:,1], 'o-')\n", |
| 112 | + " ax.set_aspect('equal')\n", |
| 113 | + " ax.grid(True)\n", |
| 114 | + " ax.autoscale(False)\n", |
| 115 | + " ax.set_xlabel(r'$x \\; [\\mathrm{m}]$')\n", |
| 116 | + " ax.set_ylabel(r'$y \\; [\\mathrm{m}]$')\n", |
| 117 | + " \n", |
| 118 | + " ax.set_xlim(*ax_lims[0])\n", |
| 119 | + " ax.set_ylim(*ax_lims[1])\n", |
| 120 | + " ax.set_xticks(torch.arange(ax_lims[0][0], ax_lims[0][1] + 1, 1))\n", |
| 121 | + " ax.set_yticks(torch.arange(ax_lims[1][0], ax_lims[1][1] + 1, 1))\n", |
| 122 | + " \n", |
| 123 | + " plt.title('Trajectory')\n", |
| 124 | + " if car:\n", |
| 125 | + " for x, y, θ in τ[:, :3]:\n", |
| 126 | + " draw_car(plt.gca(), x, y, θ)" |
| 127 | + ] |
| 128 | + }, |
| 129 | + { |
| 130 | + "cell_type": "code", |
| 131 | + "execution_count": null, |
| 132 | + "metadata": {}, |
| 133 | + "outputs": [], |
| 134 | + "source": [ |
| 135 | + "# Manual driving\n", |
| 136 | + "x = torch.tensor((0, 0, 0, 1),dtype=torch.float32)\n", |
| 137 | + "# Optimal action from back propagation\n", |
| 138 | + "u = torch.tensor([\n", |
| 139 | + " [0.1280, 0.0182],\n", |
| 140 | + " [0.0957, 0.0131],\n", |
| 141 | + " [0.0637, 0.0085],\n", |
| 142 | + " [0.0318, 0.0043],\n", |
| 143 | + " [0.0000, 0.0000]\n", |
| 144 | + "])\n", |
| 145 | + "# Brake\n", |
| 146 | + "u = torch.ones(10, 2) * -0.1\n", |
| 147 | + "u[:, 0] = 0\n", |
| 148 | + "# S\n", |
| 149 | + "u = torch.zeros(10, 2)\n", |
| 150 | + "u[:5, 0] = 0.2\n", |
| 151 | + "u[5:, 0] = -0.2\n", |
| 152 | + "# Straight\n", |
| 153 | + "# u = torch.zeros(10, 2)\n", |
| 154 | + "\n", |
| 155 | + "dt = 1 # s\n", |
| 156 | + "trajectory = [x.clone()]\n", |
| 157 | + "for t in range(10):\n", |
| 158 | + " x += f(x, u[t]) * dt\n", |
| 159 | + " print(x)\n", |
| 160 | + " trajectory.append(x.clone())\n", |
| 161 | + "τ = torch.stack(trajectory)\n", |
| 162 | + "\n", |
| 163 | + "# plt.plot(0,0,'gx', markersize=20, markeredgewidth=5)\n", |
| 164 | + "# plt.plot(5,1,'rx', markersize=20, markeredgewidth=5)\n", |
| 165 | + "plot_τ(plt.gca(), τ, car=True)\n", |
| 166 | + "\n", |
| 167 | + "plt.axis((-1, 10, -1, 5))\n", |
| 168 | + "name = 'S'\n", |
| 169 | + "\n", |
| 170 | + "# plt.axis((-1, 12, -3, 3))\n", |
| 171 | + "# name = 'straight'\n", |
| 172 | + "\n", |
| 173 | + "# plt.axis((-1, 7, -2, 2))\n", |
| 174 | + "# name = 'brake'\n", |
| 175 | + "\n", |
| 176 | + "# plt.savefig(f'{name}.pdf')\n", |
| 177 | + "\n", |
| 178 | + "plt.figure(figsize=(6, 2))\n", |
| 179 | + "plt.title('Control signal')\n", |
| 180 | + "plt.stem(np.arange(10)+0.9, u[:,0], 'C1', markerfmt='C1o', use_line_collection=True, basefmt='none')\n", |
| 181 | + "plt.stem(np.arange(10)+1.1, u[:,1], 'C2', markerfmt='C2o', use_line_collection=True, basefmt='none')\n", |
| 182 | + "plt.ylim((-0.5, 0.5))\n", |
| 183 | + "plt.xticks(np.arange(12))\n", |
| 184 | + "plt.xlabel('discrete time index', fontsize=12)\n", |
| 185 | + "# plt.savefig(f'{name}-ctrl.pdf')" |
| 186 | + ] |
| 187 | + }, |
| 188 | + { |
| 189 | + "cell_type": "code", |
| 190 | + "execution_count": null, |
| 191 | + "metadata": {}, |
| 192 | + "outputs": [], |
| 193 | + "source": [ |
| 194 | + "# Costs definition\n", |
| 195 | + "# x: states (x, y, θ, s)\n", |
| 196 | + "def vanilla_cost(state, target):\n", |
| 197 | + " x_x, x_y = target\n", |
| 198 | + " return (state[-1][0] - x_x).pow(2) + (state[-1][1] - x_y).pow(2)\n", |
| 199 | + "\n", |
| 200 | + "def cost_with_target_s(state, target):\n", |
| 201 | + " x_x, x_y = target\n", |
| 202 | + " return (state[-1][0] - x_x).pow(2) + (state[-1][1] - x_y).pow(2) + (state[-1][-1]).pow(2)\n", |
| 203 | + "\n", |
| 204 | + "def cost_sum_distances(state, target):\n", |
| 205 | + " x_x, x_y = target\n", |
| 206 | + " dists = ((state[:, 0] - x_x).pow(2) + (state[:, 1] - x_y).pow(2)).pow(0.5)\n", |
| 207 | + " return dists.mean()\n", |
| 208 | + "\n", |
| 209 | + "def cost_sum_square_distances(state, target):\n", |
| 210 | + " x_x, x_y = target\n", |
| 211 | + " dists = ((state[:, 0] - x_x).pow(2) + (state[:, 1] - x_y).pow(2))\n", |
| 212 | + " return dists.mean()\n", |
| 213 | + "\n", |
| 214 | + "def cost_logsumexp(state, target):\n", |
| 215 | + " x_x, x_y = target\n", |
| 216 | + " dists = ((state[:, 0] - x_x).pow(2) + (state[:, 1] - x_y).pow(2))#.pow(0.5)\n", |
| 217 | + " return -1 * torch.logsumexp(-1 * dists, dim=0)" |
| 218 | + ] |
| 219 | + }, |
| 220 | + { |
| 221 | + "cell_type": "code", |
| 222 | + "execution_count": null, |
| 223 | + "metadata": {}, |
| 224 | + "outputs": [], |
| 225 | + "source": [ |
| 226 | + "# Path planning\n", |
| 227 | + "def path_planning_with_cost(x_x, x_y, s, T, epochs, stepsize, cost_f, ax=None, ax_lims=None, debug=False):\n", |
| 228 | + " \"\"\"\n", |
| 229 | + " Path planning for tricycle\n", |
| 230 | + " x_x: x component of postion vector\n", |
| 231 | + " x_y: y component of postion vector\n", |
| 232 | + " s: initial speed\n", |
| 233 | + " T: time steps\n", |
| 234 | + " epochs: number of epochs for back propagation\n", |
| 235 | + " stepsize: stepsize for back propagation\n", |
| 236 | + " cost_f: cost funciton that takes the trajectory and the tuple (x, y) - target.\n", |
| 237 | + " ax: axis to plot the trajectory\n", |
| 238 | + " \"\"\"\n", |
| 239 | + " ax = ax or plt.gca()\n", |
| 240 | + " plt.plot(0, 0, 'gx', markersize=20, markeredgewidth=5)\n", |
| 241 | + " plt.plot(x_x, x_y, 'rx', markersize=20, markeredgewidth=5)\n", |
| 242 | + " u = nn.Parameter(torch.zeros(T, 2))\n", |
| 243 | + " optimizer = SGD((u,), lr=stepsize)\n", |
| 244 | + " dt = 1 # s\n", |
| 245 | + " costs = []\n", |
| 246 | + " for epoch in range(epochs):\n", |
| 247 | + " x = [torch.tensor((0, 0, 0, s),dtype=torch.float32)]\n", |
| 248 | + " for t in range(1, T+1):\n", |
| 249 | + " x.append(x[-1] + f(x[-1], u[t-1]) * dt)\n", |
| 250 | + " x_t = torch.stack(x)\n", |
| 251 | + " τ = torch.stack(x).detach()\n", |
| 252 | + " cost = cost_f(x_t, (x_x, x_y))\n", |
| 253 | + " costs.append(cost.item())\n", |
| 254 | + " optimizer.zero_grad()\n", |
| 255 | + " cost.backward()\n", |
| 256 | + " optimizer.step()\n", |
| 257 | + " if debug: \n", |
| 258 | + " print(u.data)\n", |
| 259 | + " # Only plot the first and last trajectories\n", |
| 260 | + " if epoch == 0: \n", |
| 261 | + " plot_τ(ax, τ, ax_lims=ax_lims)\n", |
| 262 | + " if epoch == epochs-1:\n", |
| 263 | + " plot_τ(ax, τ, car=True, ax_lims=ax_lims)" |
| 264 | + ] |
| 265 | + }, |
| 266 | + { |
| 267 | + "cell_type": "code", |
| 268 | + "execution_count": null, |
| 269 | + "metadata": {}, |
| 270 | + "outputs": [], |
| 271 | + "source": [ |
| 272 | + "path_planning_with_cost(x_x=5, x_y=1, s=1, T=5, epochs=5, stepsize=0.01, cost_f=vanilla_cost, debug=False)" |
| 273 | + ] |
| 274 | + }, |
| 275 | + { |
| 276 | + "cell_type": "code", |
| 277 | + "execution_count": null, |
| 278 | + "metadata": {}, |
| 279 | + "outputs": [], |
| 280 | + "source": [ |
| 281 | + "plt.figure(dpi=100, figsize=(10, 55))\n", |
| 282 | + "for i in range(5, 16):\n", |
| 283 | + " ax = plt.subplot(11, 1, i - 5 + 1)\n", |
| 284 | + " path_planning_with_cost(x_x=5, x_y=1, s=1, T=i, epochs=50, stepsize=0.001, ax=ax, cost_f=vanilla_cost, debug=False)\n", |
| 285 | + " plt.title(f'T={i}')\n", |
| 286 | + "plt.tight_layout()\n", |
| 287 | + "plt.suptitle('Using just final position for the cost', y=1.01)\n", |
| 288 | + "# plt.savefig('final-position.pdf')" |
| 289 | + ] |
| 290 | + }, |
| 291 | + { |
| 292 | + "cell_type": "code", |
| 293 | + "execution_count": null, |
| 294 | + "metadata": {}, |
| 295 | + "outputs": [], |
| 296 | + "source": [ |
| 297 | + "plt.figure(dpi=100, figsize=(10, 55))\n", |
| 298 | + "plt.suptitle('Using final position and speed for the cost', y=1.01)\n", |
| 299 | + "for i in range(5, 16):\n", |
| 300 | + " ax = plt.subplot(11, 1, i - 5 + 1)\n", |
| 301 | + " path_planning_with_cost(x_x=5, x_y=1, s=1, T=i, epochs=50, stepsize=0.001, cost_f=cost_with_target_s, ax=ax, debug=False)\n", |
| 302 | + " plt.title(f\"T={i}\")\n", |
| 303 | + "plt.tight_layout()\n", |
| 304 | + "# plt.savefig('final-position-and-speed.pdf')" |
| 305 | + ] |
| 306 | + }, |
| 307 | + { |
| 308 | + "cell_type": "code", |
| 309 | + "execution_count": null, |
| 310 | + "metadata": {}, |
| 311 | + "outputs": [], |
| 312 | + "source": [ |
| 313 | + "plt.figure(dpi=100, figsize=(10, 55))\n", |
| 314 | + "plt.suptitle('Using sum of distances for the cost', y=1.01)\n", |
| 315 | + "for i in range(5, 16):\n", |
| 316 | + " ax = plt.subplot(11, 1, i - 5 + 1)\n", |
| 317 | + " costs = path_planning_with_cost(x_x=5, x_y=1, s=1, T=i, epochs=40, stepsize=0.0025, ax=ax, cost_f=cost_sum_square_distances, debug=False)\n", |
| 318 | + " plt.title(f\"T={i}\")\n", |
| 319 | + " plt.gca().set_aspect(\"equal\")\n", |
| 320 | + "plt.tight_layout()\n", |
| 321 | + "# plt.savefig('average-distance.pdf')" |
| 322 | + ] |
| 323 | + }, |
| 324 | + { |
| 325 | + "cell_type": "code", |
| 326 | + "execution_count": null, |
| 327 | + "metadata": {}, |
| 328 | + "outputs": [], |
| 329 | + "source": [ |
| 330 | + "plt.figure(dpi=100, figsize=(10, 55))\n", |
| 331 | + "plt.suptitle('Using softmin of distances for the cost (focusing on the points closest to target)', y=1.01)\n", |
| 332 | + "for i in range(5, 16):\n", |
| 333 | + " ax = plt.subplot(11, 1, i - 5 + 1)\n", |
| 334 | + " path_planning_with_cost(x_x=5, x_y=1, s=1, T=i, epochs=100, stepsize=0.005, cost_f=cost_logsumexp, ax=ax, debug=False)\n", |
| 335 | + " plt.title(f\"T={i}\")\n", |
| 336 | + "plt.tight_layout()\n", |
| 337 | + "plt.savefig('softmin.pdf')" |
| 338 | + ] |
| 339 | + } |
| 340 | + ], |
| 341 | + "metadata": { |
| 342 | + "kernelspec": { |
| 343 | + "display_name": "Python 3", |
| 344 | + "language": "python", |
| 345 | + "name": "python3" |
| 346 | + }, |
| 347 | + "language_info": { |
| 348 | + "codemirror_mode": { |
| 349 | + "name": "ipython", |
| 350 | + "version": 3 |
| 351 | + }, |
| 352 | + "file_extension": ".py", |
| 353 | + "mimetype": "text/x-python", |
| 354 | + "name": "python", |
| 355 | + "nbconvert_exporter": "python", |
| 356 | + "pygments_lexer": "ipython3", |
| 357 | + "version": "3.8.1" |
| 358 | + } |
| 359 | + }, |
| 360 | + "nbformat": 4, |
| 361 | + "nbformat_minor": 4 |
| 362 | +} |
0 commit comments