-
Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathrun_infer.py
261 lines (226 loc) Β· 9.38 KB
/
run_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""Implements evaluation of agents on HumanEvalFix from the HumanEvalPack benchmark introduced in
"OctoPack: Instruction Tuning Code Large Language Models" (https://arxiv.org/abs/2308.07124).
Please see https://github.com/bigcode-project/bigcode-evaluation-harness/blob/main/bigcode_eval/tasks/humanevalpack.py
for the reference implementation used in the paper.
TODOs:
- Potentially support other HumanEvalPack datasets (Explain & Synthesize)
- Support other languages (currently only Python)
"""
import asyncio
import logging
import os
import pathlib
import pandas as pd
from datasets import load_dataset
from evaluate import load
from evaluation.utils.shared import (
EvalMetadata,
codeact_user_response,
make_metadata,
monologue_user_response,
prepare_dataset,
run_evaluation,
)
from opendevin.controller.agent import Agent
from opendevin.controller.state.state import State
from opendevin.core.config import config, get_llm_config_arg, parse_arguments
from opendevin.core.logger import get_console_handler
from opendevin.core.logger import opendevin_logger as logger
from opendevin.core.main import run_agent_controller
from opendevin.llm.llm import LLM
IMPORT_HELPER = {
'python': [
'import math',
'import re',
'import sys',
'import copy',
'import datetime',
'import itertools',
'import collections',
'import heapq',
'import statistics',
'import functools',
'import hashlib',
'import numpy',
'import numpy as np',
'import string',
'from typing import *',
'from collections import *',
],
}
LANGUAGE_TO_TIMEOUT = {
'python': 10,
}
LANGUAGE_TO_NUM_WORKERS = {
'python': 4,
}
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
'MonologueAgent': monologue_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have fixed the issue through code changes, please run the following command: <execute_bash> exit </execute_bash>.\n'
}
def get_test_result(instance, path, language='python', timeout=10):
# Evaluation reference: https://github.com/bigcode-project/bigcode-evaluation-harness/blob/84b96da31b7f840b55c5733325346176140cdb6b/bigcode_eval/tasks/humanevalpack.py#L347
test_result = {'result': {}, 'metadata': {}}
code_metric = load('Muennighoff/code_eval_octopack')
timeout = LANGUAGE_TO_TIMEOUT[language]
num_workers = LANGUAGE_TO_NUM_WORKERS[language]
python_imports = '\n'.join(IMPORT_HELPER[language])
# Load function from path
with open(path, 'r') as f:
function = f.read()
function = [[python_imports + '\n' + function.strip()]]
results, logs = code_metric.compute(
references=[instance.test],
predictions=function,
language=language,
timeout=timeout,
num_workers=num_workers,
)
test_result['result'] = results
test_result['metadata'] = {
'logs': logs,
'timeout': timeout,
'num_workers': num_workers,
}
return test_result
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
):
# Create the agent
agent = Agent.get_cls(metadata.agent_class)(llm=LLM(llm_config=metadata.llm_config))
old_workspace_mount_path = config.workspace_mount_path
old_workspace_base = config.workspace_base
try:
workspace_mount_path = os.path.join(
config.workspace_mount_path, '_eval_workspace'
)
# create process-specific workspace dir
workspace_mount_path = os.path.join(workspace_mount_path, str(os.getpid()))
pathlib.Path(workspace_mount_path).mkdir(parents=True, exist_ok=True)
# reset workspace to config
config.workspace_base = workspace_mount_path
config.workspace_mount_path = workspace_mount_path
# use a session id for concurrent evaluation
sid = instance.task_id.replace('/', '__')
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
# Set up logger
log_file = os.path.join(
metadata.eval_output_dir,
'logs',
f'instance_{sid}.log',
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
# add back the console handler to print ONE line
logger.addHandler(get_console_handler())
logger.info(
f'Starting evaluation for instance {instance.task_id}.\nLOG: tail -f {log_file}'
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(
logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
)
logger.addHandler(file_handler)
logger.info(f'Process-specific workspace mounted at {workspace_mount_path}')
# Create file with HumanEvalFix problem
# Prompt reference: https://github.com/bigcode-project/bigcode-evaluation-harness/blob/84b96da31b7f840b55c5733325346176140cdb6b/bigcode_eval/tasks/humanevalpack.py#L509
problem_statement = (
instance.declaration + instance.buggy_solution + '\n' + instance.test
)
path = os.path.join(workspace_mount_path, f'{sid}.py')
with open(path, 'w') as f:
f.write(problem_statement)
# Prepare instruction
instruction = (
f'Please fix the function in {instance.task_id.replace("/", "__")}.py such that all test cases pass.\n'
'Environment has been set up for you to start working. You may assume all necessary tools are installed.\n\n'
'# Problem Statement\n'
f'{problem_statement}\n\n'
)
instruction += (
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
'You should NOT modify any existing test case files. If needed, you can add new test cases in a NEW file to reproduce the issue.\n'
'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n'
)
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[agent.__class__.__name__]
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_agent_controller(
agent,
instruction,
max_iterations=metadata.max_iterations,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
agent.__class__.__name__
),
sid=sid,
headless_mode=True,
)
)
# ======= Attempt to evaluate the agent's edits =======
test_result = get_test_result(instance, path)
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()
# Save the output
output = {
'task_id': instance.task_id,
'instruction': instruction,
'metadata': metadata.model_dump(),
'history': histories,
'metrics': metrics,
'error': state.last_error if state and state.last_error else None,
'test_result': test_result,
}
except Exception:
logger.error('Process instance failed')
raise
finally:
config.workspace_mount_path = old_workspace_mount_path
config.workspace_base = old_workspace_base
return output
if __name__ == '__main__':
args = parse_arguments()
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
# so we don't need to manage file uploading to OpenDevin's repo
dataset = load_dataset(
'bigcode/humanevalpack', 'python'
) # TODO: Support other languages
hefix_tests = dataset['test'].to_pandas()
id_column = 'task_id'
llm_config = get_llm_config_arg(args.llm_config) if args.llm_config else config.llm
logger.info(f'Config for evaluation: {config}')
metadata = make_metadata(
llm_config,
args.dataset_name,
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(dataset, output_file, args.eval_n_limit, id_column)
run_evaluation(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
id_column,
)