-
Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathrun_infer.py
241 lines (212 loc) Β· 9.27 KB
/
run_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import asyncio
import logging
import os
import pathlib
import re
import shutil
from functools import partial
import huggingface_hub
import pandas as pd
from datasets import load_dataset
from evaluation.gaia.scorer import question_scorer
from evaluation.utils.shared import (
EvalMetadata,
codeact_user_response,
make_metadata,
monologue_user_response,
prepare_dataset,
run_evaluation,
)
from opendevin.controller.agent import Agent
from opendevin.controller.state.state import State
from opendevin.core.config import config, get_llm_config_arg, get_parser
from opendevin.core.logger import get_console_handler
from opendevin.core.logger import opendevin_logger as logger
from opendevin.core.main import run_agent_controller
from opendevin.events.action import CmdRunAction, MessageAction
from opendevin.llm.llm import LLM
DATASET_CACHE_DIR = '~/.cache/open-devin/evals/gaia'
DATASET_CACHE_DIR = os.path.expanduser(DATASET_CACHE_DIR)
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': partial(codeact_user_response, encapsulate_solution=True),
'MonologueAgent': monologue_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n'
}
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
):
# Create the agent
agent = Agent.get_cls(metadata.agent_class)(llm=LLM(llm_config=metadata.llm_config))
# create process-specific workspace dir
# we will create a workspace directory for EACH process
# so that different agent don't interfere with each other.
old_workspace_mount_path = config.workspace_mount_path
try:
workspace_mount_path = os.path.join(
config.workspace_mount_path, '_eval_workspace'
)
workspace_mount_path = os.path.join(workspace_mount_path, str(os.getpid()))
pathlib.Path(workspace_mount_path).mkdir(parents=True, exist_ok=True)
config.workspace_mount_path = workspace_mount_path
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
eval_output_dir = metadata.eval_output_dir
if reset_logger:
# Set up logger
log_file = os.path.join(
eval_output_dir, 'logs', f'instance_{instance["task_id"]}.log'
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
# add back the console handler to print ONE line
logger.addHandler(get_console_handler())
logger.info(
f'Starting evaluation for instance {instance["task_id"]}.\nLOG: tail -f {log_file}'
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(
logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
)
logger.addHandler(file_handler)
logger.info(f'Process-specific workspace mounted at {workspace_mount_path}')
if instance['file_name'] != '':
# if this question comes with a file, we need to save it to the workspace
assert metadata.data_split is not None
src_file = os.path.join(
DATASET_CACHE_DIR, '2023', metadata.data_split, instance['file_name']
)
extension_name = instance['file_name'].split('.')[-1]
dest_file = os.path.join(workspace_mount_path, f'file.{extension_name}')
shutil.copyfile(src_file, dest_file)
logger.info(f'File copied to {dest_file}')
else:
dest_file = None
# Prepare instruction
instruction = f"{instance['Question']}\n"
logger.info(f'Instruction: {instruction}')
if dest_file:
instruction += f"\n\nThe mentioned file is provided in the workspace at: {dest_file.split('/')[-1]}"
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
instruction += 'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n'
instruction += (
'For example: The answer to the question is <solution> 42 </solution>.\n'
)
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX.get(agent.__class__.__name__, '')
logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_agent_controller(
agent,
instruction,
max_iterations=metadata.max_iterations,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
agent.__class__.__name__
],
sid=instance['task_id'],
headless_mode=True,
)
)
# ======= Attempt to evaluate the agent's edits =======
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
model_answer_raw = ''
# get the last message or thought from the agent
for event in state.history.get_events(reverse=True):
if isinstance(event, CmdRunAction) and event.source == 'agent':
model_answer_raw = event.thought
elif isinstance(event, MessageAction) and event.source == 'agent':
model_answer_raw = event.content
# attempt to parse model_answer
model_answer = re.findall(r'<solution>(.*?)</solution>', model_answer_raw)
if len(model_answer) == 0:
logger.warning(f'Failed to parse model answer: {model_answer_raw}')
model_answer = model_answer_raw
else:
model_answer = model_answer[0]
logger.info(
f'Final message: {model_answer} | Ground truth: {instance["Final answer"]}'
)
score = question_scorer(
model_answer=model_answer, ground_truth=instance['Final answer']
)
test_result = {
'score': score,
'model_answer_raw': model_answer_raw,
'model_answer': model_answer,
'ground_truth': instance['Final answer'],
}
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()
# Save the output
output = {
'instance_id': instance['task_id'],
'instance': instance,
'instruction': instance['Question'],
'metadata': metadata.model_dump(),
'history': histories,
'metrics': metrics,
'error': state.last_error if state and state.last_error else None,
'test_result': test_result,
}
except Exception:
logger.error('Process instance failed')
raise
finally:
config.workspace_mount_path = old_workspace_mount_path
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--level',
type=str,
help='gaia level to evaluate, eg. 2023_level1',
)
args, _ = parser.parse_known_args()
if args.directory:
config.workspace_base = os.path.abspath(args.directory)
logger.info(f'Setting workspace base to {config.workspace_base}')
llm_config = get_llm_config_arg(args.llm_config) if args.llm_config else config.llm
logger.info(f'Config for evaluation: {config}')
metadata = make_metadata(
llm_config=llm_config,
dataset_name='gaia',
agent_class=args.agent_cls,
max_iterations=args.max_iterations,
eval_note=args.eval_note,
eval_output_dir=args.eval_output_dir,
data_split=args.data_split,
details={'gaia-level': args.level},
)
dataset = load_dataset('gaia-benchmark/GAIA', args.level)
huggingface_hub.snapshot_download(
'gaia-benchmark/GAIA',
repo_type='dataset',
local_dir=DATASET_CACHE_DIR,
)
gaia_tests = dataset[metadata.data_split]
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
prepared_dataset = prepare_dataset(
gaia_tests.to_pandas(), output_file, args.eval_n_limit, 'task_id'
)
agent = Agent.get_cls(args.agent_cls)(llm=LLM(config.llm))
run_evaluation(
dataset=prepared_dataset,
metadata=metadata,
output_file=output_file,
num_workers=args.eval_num_workers,
process_instance_func=process_instance,
id_column='task_id',
)