-
Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathrun_infer.py
239 lines (208 loc) Β· 8.96 KB
/
run_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import asyncio
import json
import logging
import os
import pathlib
from functools import partial
import pandas as pd
from datasets import load_dataset
from evaluation.biocoder.biocoder_env_box import BiocoderData, BiocoderSSHBox
from evaluation.utils.shared import (
EvalMetadata,
codeact_user_response,
make_metadata,
monologue_user_response,
prepare_dataset,
run_evaluation,
)
from opendevin.controller.agent import Agent
from opendevin.controller.state.state import State
from opendevin.core.config import config, get_llm_config_arg, parse_arguments
from opendevin.core.logger import get_console_handler
from opendevin.core.logger import opendevin_logger as logger
from opendevin.core.main import run_agent_controller
from opendevin.llm.llm import LLM
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': partial(
codeact_user_response, encapsulate_solution=True, try_parse=None
),
'MonologueAgent': monologue_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have fixed the issue through code changes, please run the following command: <execute_bash> exit </execute_bash>.\n'
}
def get_test_result(instance, sandbox, workspace_dir_name):
test_result = {'result': {}, 'metadata': {}}
try:
code = sandbox.get_changed_code(include_signature=True)
sandbox.copy_changed_code()
test_result['metadata']['1_copy_change_success'] = True
test_result['metadata']['1_copy_change_code'] = code
except Exception:
logger.error('Error fetching changed code for this instance')
test_result['metadata']['1_copy_change_success'] = False
test_result['metadata']['1_copy_change_code'] = None
exit_code, output = sandbox.execute_and_check(
'cd /testing',
'Failed to cd /testing',
)
logger.info(f'cd $REPO_PATH: {output}')
exit_code, output = sandbox.execute_and_check(
'whoami',
'Failed to run whoami',
)
logger.info(f'whoami: {output}')
exit_code, output = sandbox.execute(
'/home/devin/mambaforge/bin/mamba run -n test python3 /testing/start_test_opendevin.py'
)
logger.info(f'$TEST_CMD:\n{output}')
exit_code, output = sandbox.execute_and_check(
'cat /testing_files/results_biocoder.json', 'Failed to read the result file'
)
if exit_code == 0:
test_result['metadata']['2_run_test_success'] = True
test_result['metadata']['2_run_test_result'] = str(output)
else:
test_result['metadata']['2_run_test_success'] = False
test_result['metadata']['2_run_test_result'] = str(output)
json_obj = json.loads(output)
test_result['result'] = json_obj['result']
return test_result
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
):
# Create the agent
agent = Agent.get_cls(metadata.agent_class)(llm=LLM(llm_config=metadata.llm_config))
instance = BiocoderData(**instance)
print(instance)
workspace_dir_name = (
f'{instance.repository}__{instance.test_case_id[:10]}__{os.getpid()}'.replace(
'/', '__'
)
)
workspace_mount_path = os.path.join(config.workspace_base, workspace_dir_name)
# create process-specific workspace dir
# if `not skip_workspace_mount` - we will create a workspace directory for EACH process
# so that different agent don't interfere with each other.
workspace_mount_path = os.path.join(workspace_mount_path, str(os.getpid()))
pathlib.Path(workspace_mount_path).mkdir(parents=True, exist_ok=True)
# Setup the logger properly, so you can run multi-processing to parallize the evaluation
if reset_logger:
# Set up logger
log_file = os.path.join(
metadata.eval_output_dir, 'logs', f'instance_{instance.test_case_id}.log'
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
# add back the console handler to print ONE line
logger.addHandler(get_console_handler())
logger.info(
f'Starting evaluation for instance {instance.test_case_id}.\nHint: run "tail -f {log_file}" to see live logs in a seperate shell'
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(
logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
)
logger.addHandler(file_handler)
logger.info(f'Process-specific workspace mounted at {workspace_mount_path}')
# NOTE: this is something special we do for SWE-Bench due to the reason described in the previous section
# You can omit this if you don't need to setup specialized sandbox
workspace_dir_name = f'{instance.repository}__{instance.test_case_id[:10]}'.replace(
'/', '__'
)
sandbox = BiocoderSSHBox.get_box_for_instance(
instance,
workspace_dir_name,
skip_workspace_mount=False,
workspace_mount_path=workspace_mount_path,
sandbox_plugins=agent.sandbox_plugins,
)
sandbox.remove_code()
# Prepare instruction
instruction = (
f'Please complete the function "{instance.signature}" in the file /workspace/{instance.repository.split("/")[1]}/{instance.filePath}.\n'
f'The environment has been set up for you to start working. You may assume all necessary tools are installed.\n'
f'To complete the task, you must directly modify the file and fill in the function, keeping in mind that the function signature is on line {instance.lineStart-1}\n\n'
f'The function should do the following:\n'
f'{instance.promptSummaryOnly}\n\n'
)
instruction += (
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
'You should NOT modify any other files other than the file intended. This means that you should NOT write any test cases.\n'
'You may need context from other files in the repository to complete this task.'
'Do NOT add any import statements or change anything else other than the writing the function body.\n'
'You do not need to run the code to check if it works. \n'
'Make sure to include proper formatting in Java and Python, including correct braces and/or indentation.\n'
)
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[agent.__class__.__name__]
# use a session id for concurrent evaluation
sid = instance.test_case_id.replace('/', '__')
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_agent_controller(
agent,
instruction,
max_iterations=metadata.max_iterations,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
agent.__class__.__name__
],
sandbox=sandbox,
sid=sid,
headless_mode=True,
)
)
test_result = get_test_result(instance, sandbox, workspace_dir_name)
if state is None:
raise ValueError('State should not be None.')
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()
# Save the output
output = {
'test_case_id': instance.test_case_id,
'biocoder_instance': instance.to_dict(),
'instruction': instruction,
'generated': test_result['metadata']['1_copy_change_code'],
'metadata': metadata.model_dump(),
'history': histories,
'metrics': metrics,
'error': state.last_error if state and state.last_error else None,
'test_result': test_result,
}
# Close the sandbox
sandbox.close()
return output
if __name__ == '__main__':
id_column = 'test_case_id'
args = parse_arguments()
dataset = load_dataset('lilbillbiscuit/biocoder_public')
biocoder_tests = dataset['test'].to_pandas()
llm_config = get_llm_config_arg(args.llm_config) if args.llm_config else config.llm
logger.info(f'Config for evaluation: {config}')
metadata = make_metadata(
llm_config,
args.dataset_name,
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(dataset, output_file, args.eval_n_limit, id_column)
run_evaluation(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
id_column,
)