-
Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathrun_infer.py
246 lines (217 loc) Β· 8.83 KB
/
run_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import asyncio
import logging
import os
import re
import shutil
import docker
import pandas as pd
from datasets import load_dataset
from evaluation.agent_bench.helper import (
FAKE_RESPONSES,
INST_SUFFIXES,
compare_results,
create_sh_file,
)
from evaluation.utils.shared import (
EvalMetadata,
make_metadata,
prepare_dataset,
run_evaluation,
)
from opendevin.controller.agent import Agent
from opendevin.controller.state.state import State
from opendevin.core.config import config, get_llm_config_arg, parse_arguments
from opendevin.core.logger import get_console_handler
from opendevin.core.logger import opendevin_logger as logger
from opendevin.core.main import run_agent_controller
from opendevin.events.action import CmdRunAction, MessageAction
from opendevin.llm.llm import LLM
from opendevin.runtime.docker.ssh_box import DockerSSHBox
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
):
# Create the agent
agent = Agent.get_cls(metadata.agent_class)(llm=LLM(llm_config=metadata.llm_config))
inst_id = instance.instance_id
question = instance.description
# create a directory for the instance's workspace
instance_workspace = str(os.path.join(config.workspace_base, inst_id))
container_inst_workspace = str(
os.path.join(config.workspace_mount_path_in_sandbox, inst_id)
)
if os.path.exists(instance_workspace):
shutil.rmtree(instance_workspace)
os.makedirs(instance_workspace, exist_ok=True)
# Set up the logger properly, so you can run multiprocessing to parallel the evaluation
if reset_logger:
# Set up logger
log_file = os.path.join(
metadata.eval_output_dir, 'logs', f'instance_{inst_id}.log'
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
# add back the console handler to print ONE line
logger.addHandler(get_console_handler())
logger.info(
f'Starting evaluation for instance {inst_id}.\nHint: run "tail -f {log_file}" to see live logs in a separate shell'
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(
logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
)
logger.addHandler(file_handler)
# =============================================
# build instruction
# =============================================
# Prepare instruction
instruction = (
f'Please fix the following issue.\n'
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n'
'For example: The answer to the question is <solution> 42 </solution>.\n'
'# Problem \n'
f'{question}\n\n'
)
instruction += (
'IMPORTANT: You should ONLY interact with the environment provided '
'to you AND NEVER ASK FOR HUMAN HELP.\n'
)
# NOTE: You can actually set slightly different instruction for different agents
instruction += INST_SUFFIXES[agent.__class__.__name__]
# =============================================
# create sandbox and run the agent
# =============================================
sandbox = DockerSSHBox()
sandbox.execute(f'cd {inst_id}')
init_cmd = instance.init
if init_cmd is not None:
scpt_name = f'{instance.instance_id}_init.sh'
scpt_path = os.path.join(container_inst_workspace, scpt_name)
host_scpt_path = os.path.join(instance_workspace, scpt_name)
create_sh_file(host_scpt_path, init_cmd)
logger.info(f'Running init script: {scpt_path}')
_, init_res = sandbox.execute(scpt_path)
logger.info(f'Init script result: {init_res}')
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_agent_controller(
agent,
instruction,
max_iterations=metadata.max_iterations,
fake_user_response_fn=FAKE_RESPONSES[agent.__class__.__name__],
sandbox=sandbox,
sid=inst_id,
headless_mode=True,
)
)
if state is None:
raise ValueError('State should not be None.')
# get the ground truth
# OSBenchSSHBox.get_ground_truth(instance, state)
# =============================================
# result evaluation
# =============================================
agent_answer = ''
get_agent_result_cmd = instance.get_agent_result
if get_agent_result_cmd is not None:
scpt_name = f'{instance.instance_id}_get_agent_result.sh'
scpt_path = os.path.join(container_inst_workspace, scpt_name)
host_scpt_path = os.path.join(instance_workspace, scpt_name)
create_sh_file(host_scpt_path, get_agent_result_cmd)
logger.info(f'Running get agent result cmd: {scpt_path}')
_, agent_answer = sandbox.execute(scpt_path)
else:
logger.info('Retrieving agent answer from history.')
raw_ans = ''
# retrieve the last agent message or thought
for event in state.history.get_events(reverse=True):
if isinstance(event, MessageAction) and event.source == 'agent':
raw_ans = event.content
elif isinstance(event, CmdRunAction) and event.source == 'agent':
raw_ans = event.thought
# parse the answer for a solution tag
agent_answer = re.findall(r'<solution>(.*?)</solution>', raw_ans)
if len(agent_answer) == 0:
logger.warning(f'Failed to parse model answer: {raw_ans}')
agent_answer = raw_ans
else:
agent_answer = agent_answer[0]
final_ans = ''
if instance.ground_truth is not None:
final_ans = instance.ground_truth
else:
get_ground_truth_cmd = instance.get_ground_truth
if get_ground_truth_cmd is not None:
scpt_name = f'{instance.instance_id}_get_ground_truth.sh'
scpt_path = os.path.join(container_inst_workspace, scpt_name)
host_scpt_path = os.path.join(instance_workspace, scpt_name)
create_sh_file(host_scpt_path, get_ground_truth_cmd)
logger.info(f'Running get ground truth cmd: {scpt_path}')
sandbox.execute(f'cd {container_inst_workspace}')
_, final_ans = sandbox.execute(scpt_path)
comparison_method = instance.comparison_method
logger.info(
f'Final message: {agent_answer} | Ground truth: {final_ans} | Comparison method: {comparison_method}'
)
test_result = compare_results(comparison_method, agent_answer, final_ans)
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()
metrics = state.metrics.get() if state.metrics else None
# Save the output
output = {
'instance_id': inst_id,
'instance': instance.to_dict(),
'instruction': instruction,
'metadata': metadata.model_dump(),
'history': histories,
'metrics': metrics,
'error': state.last_error if state and state.last_error else None,
'test_result': {
'agent_answer': agent_answer,
'final_answer': final_ans,
'check_method': comparison_method,
'result': test_result,
},
}
# clean up
if os.path.exists(instance_workspace):
shutil.rmtree(instance_workspace)
# Close the sandbox
try:
sandbox.close()
except docker.errors.NotFound as e:
logger.error(f'Failed to close sandbox: {e}')
return output
if __name__ == '__main__':
id_column = 'instance_id'
args = parse_arguments()
dataset = load_dataset('iFurySt/AgentBench')
agent_bench_tests = dataset['osbench'].to_pandas()
llm_config = get_llm_config_arg(args.llm_config) if args.llm_config else config.llm
logger.info(f'Config for evaluation: {config}')
metadata = make_metadata(
llm_config,
args.dataset_name,
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(dataset, output_file, args.eval_n_limit, id_column)
run_evaluation(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
id_column,
)