-
Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathrun_infer.py
229 lines (194 loc) Β· 7.35 KB
/
run_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import asyncio
import logging
import os
import pandas as pd
# import huggingface_hub
from datasets import load_dataset
from evaluation.EDA.game import Q20Game, Q20GameCelebrity
from evaluation.utils.shared import (
EvalMetadata,
make_metadata,
monologue_user_response,
prepare_dataset,
run_evaluation,
)
from opendevin.controller.agent import Agent
# from evaluation.EDA.scorer import question_scorer
from opendevin.controller.state.state import State
from opendevin.core.config import config, get_llm_config_arg, get_parser
from opendevin.core.logger import get_console_handler
from opendevin.core.logger import opendevin_logger as logger
from opendevin.core.main import run_agent_controller
from opendevin.llm.llm import LLM
game = None
def codeact_user_response_eda(state: State) -> str:
global game
model_guess = ''
# retrieve the latest model message from history
if state.history:
model_guess = state.history.get_last_agent_message()
assert game is not None, 'Game is not initialized.'
msg = game.generate_user_response(model_guess)
game.curr_turn += 1
logger.info(f'Model guess: {model_guess}')
logger.info(f'Answer response: {msg}')
if 'bingo!' in msg.lower():
return '/exit'
return msg
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response_eda,
'MonologueAgent': monologue_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n'
}
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
):
# Create the agent
agent = Agent.get_cls(metadata.agent_class)(llm=LLM(llm_config=metadata.llm_config))
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
eval_output_dir = metadata.eval_output_dir
if reset_logger:
# Set up logger
log_file = os.path.join(
eval_output_dir, 'logs', f'instance_{instance["text"].strip()}.log'
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
# add back the console handler to print ONE line
logger.addHandler(get_console_handler())
logger.info(
f'Starting evaluation for instance {instance["text"].strip()}.\nLOG: tail -f {log_file}'
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(
logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
)
logger.addHandler(file_handler)
# Prepare instruction
_game_class = {'things': Q20Game, 'celebs': Q20GameCelebrity}
guesser_kargs = {
'max_new_tokens': 64,
'temperature': 0.8,
'repetition_penalty': 1.0,
'do_sample': True,
} # no penalty
# Use codeactagent as guesser_model
global game
assert metadata.dataset is not None
assert metadata.details is not None
game = _game_class[metadata.dataset](
item=instance['text'].strip(),
answerer_model=metadata.details['answerer_model'],
guesser_model=None,
num_turns=metadata.max_iterations,
openai_api_key=metadata.details['openai_api_key'],
guesser_kargs=guesser_kargs,
)
instruction = f'{game.first_user_utterance}'
logger.info(f'Instruction: {instruction}')
# instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[agent.__class__.__name__]
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_agent_controller(
agent,
instruction,
max_iterations=metadata.max_iterations,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
agent.__class__.__name__
],
sid=instance['text'].strip(),
headless_mode=True,
)
)
# ======= Attempt to evaluate the agent's edits =======
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
final_message = state.history.get_last_agent_message()
logger.info(f'Final message: {final_message} | Ground truth: {instance["text"]}')
test_result = game.reward()
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()
# Save the output
output = {
'instance_id': instance['text'].strip(),
'instance': instance,
'instruction': instruction,
'metadata': metadata.model_dump(),
'history': histories,
'metrics': metrics,
'error': state.last_error if state and state.last_error else None,
'test_result': {
'success': test_result,
'final_message': final_message,
'ground_truth': instance['text'],
},
}
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--answerer_model', '-a', default='gpt-3.5-turbo', help='answerer model'
)
parser.add_argument(
'--dataset',
default='things',
choices=['things', 'celebs'],
type=str,
help='dataset to be used',
)
parser.add_argument(
'--OPENAI_API_KEY', type=str, required=True, help='Your OpenAI API key'
)
parser.add_argument(
'--data-split',
default='test',
type=str,
help='data split, eg, test',
)
args, _ = parser.parse_known_args()
llm_config = get_llm_config_arg(args.llm_config) if args.llm_config else config.llm
logger.info(f'Config for evaluation: {config}')
eda_dataset = load_dataset(
'yizheapple/entity-deduction-arena', name=args.dataset, split=args.data_split
)
metadata = make_metadata(
llm_config,
f'eda-{args.dataset}',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
data_split=args.data_split,
details={
'answerer_model': str(args.answerer_model),
'openai_api_key': str(args.OPENAI_API_KEY),
},
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
prepared_dataset = prepare_dataset(
eda_dataset.to_pandas(), output_file, args.eval_n_limit, 'text'
)
agent = Agent.get_cls(args.agent_cls)(llm=LLM(config.llm))
run_evaluation(
prepared_dataset,
metadata,
output_file,
args.eval_num_workers,
process_instance,
'text',
)