-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdg_prediction.py
232 lines (194 loc) · 9.38 KB
/
dg_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 23 19:08:25 2021
@author: Manuel Camargo
"""
import os
import subprocess
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import sys
import getopt
import shutil
import yaml
import argparse
from GenerativeLSTM.model_prediction import model_predictor as pr
from GenerativeLSTM import support_functions as sf
from support_modules import stochastic_model as sm
from support_modules import models_merger as mm
# =============================================================================
# Main function
# =============================================================================
def catch_parameter(opt):
"""Change the captured parameters names"""
switch = {'-h': 'help', '-a': 'activity', '-c': 'folder',
'-b': 'model_file', '-v': 'variant', '-r': 'rep'}
return switch.get(opt)
def call_simod(file_name):
print('----------------------------------------------------------------------')
print('------------------- RUNNING SIMOD -----------------------------')
print('----------------------------------------------------------------------')
simod_files = os.listdir(os.path.join('GenerativeLSTM/input_files', 'simod'))
#Copy event log file to Simod
try:
source_file = os.path.join('GenerativeLSTM','input_files', file_name)
destination_file = os.path.join('..','Simod_Modified','Simod-2.3.1','inputs', file_name)
print(source_file)
print(destination_file)
shutil.copy(source_file, destination_file)
except FileNotFoundError as e:
print(e)
exit(1)
if file_name not in simod_files:
# Remove all the files inside Simod outputs
# outputs_folder = os.path.join('..', 'Simod_Modified', 'Simod-2.3.1', 'outputs')
# shutil.rmtree(outputs_folder, ignore_errors=True)
# os.makedirs(outputs_folder, exist_ok=True)
# Execute simod for the different Event logs
os.chdir('../Simod_Modified/Simod-2.3.1/')
simod_command = f'python simod_console.py -f {file_name} -m sm3'
try:
result = subprocess.run(simod_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
# Print the output and error
print("stdout:", result.stdout)
print("stderr:", result.stderr)
except Exception as e:
print(f"An error occurred while running the subprocess: {e}")
# Source folder
source_folder = os.path.join('Simod-2.3.1', 'outputs')
# Destination folder to copy the .bpmn files
destination_folder = os.path.join('GenerativeLSTM', 'input_files', 'simod')
# Find all .bpmn files within the source folder and copy them to the destination folder
for root, dirs, files in os.walk(source_folder):
for file in files:
if file.endswith('.bpmn'):
shutil.copy(os.path.join(root, file), destination_folder)
os.chdir('../../DeclarativeProcessSimulation')
#Delete event log file from Simod
#os.remove(destination_file)
print("finished SIMOD")
def call_spmd(parameters):
print('----------------------------------------------------------------------')
print('-------------- RUNNING Stochastic Process Model --------------------')
print('----------------------------------------------------------------------')
print("time format " + parameters['read_options']['timeformat'])
print("column_names")
print(parameters['read_options']['column_names'])
print("one_timestamp")
print(parameters['read_options']['one_timestamp'])
print("filter_d_attrib")
print(parameters['read_options']['filter_d_attrib'])
print("file")
print(parameters['filename'].split('.')[0])
print("sm3_path")
print(parameters['sm3_path'])
print("bimp_path")
print(parameters['bimp_path'])
print("concurrency")
print(parameters['concurrency'])
print("epsilon")
print(parameters['epsilon'])
print("eta")
print(parameters['eta'])
settings = dict()
settings['timeformat'] = parameters['read_options']['timeformat']
settings['column_names'] = parameters['read_options']['column_names']
settings['one_timestamp'] = parameters['read_options']['one_timestamp']
settings['filter_d_attrib'] = parameters['read_options']['filter_d_attrib']
settings['file'] = parameters['filename'].split('.')[0]
settings['sm3_path'] = parameters['sm3_path']
settings['bimp_path'] = parameters['bimp_path']
settings['concurrency'] = parameters['concurrency']
settings['epsilon'] = parameters['epsilon']
settings['eta'] = parameters['eta']
settings['log_path'] = os.path.join('GenerativeLSTM','input_files', settings['file'] + '.xes')
settings['log_path_tobe'] = os.path.join('GenerativeLSTM','input_files', 'spmd', settings['file'] + '.xes')
settings['tobe_bpmn_path'] = os.path.join('GenerativeLSTM','input_files', 'spmd', settings['file'] + '.bpmn')
print(os.path.join('GenerativeLSTM','input_files', settings['file'] + '.xes'))
print(os.path.join('GenerativeLSTM','input_files', 'spmd', settings['file'] + '.bpmn'))
spmd = sm.StochasticModel(settings)
return spmd
def call_merger(parameters, spmd):
print('----------------------------------------------------------------------')
print('--------------------------- RUNNING MERGER --------------------------')
print('----------------------------------------------------------------------')
settings = dict()
settings['file'] = parameters['filename'].split('.')[0]
settings['bimp_path'] = parameters['bimp_path']
settings['tobe_bpmn_path'] = os.path.join('GenerativeLSTM','input_files', 'spmd', settings['file'] + '.bpmn')
settings['asis_bpmn_path'] = os.path.join('GenerativeLSTM','input_files', 'simod', settings['file'] + '.bpmn')
settings['csv_output_path'] = os.path.join('GenerativeLSTM','output_files', 'simulation_stats', settings['file'] + '.csv')
settings['output_path'] = os.path.join('GenerativeLSTM','output_files', 'simulation_files', settings['file'] + '.bpmn')
settings['lrs'] = spmd.lrs
mod_mer = mm.MergeModels(settings)
def load_config(config_file):
with open(config_file, 'r') as file:
return yaml.safe_load(file)
def main(argv):
parser = argparse.ArgumentParser(description='Process some parameters.')
parser.add_argument('--config', type=str, required=True, help='Path to the config file')
args = parser.parse_args(argv)
config_file = args.config
config = load_config(config_file)
parameters = dict()
column_names = {'Case ID': 'caseid',
'Activity': 'task',
'lifecycle:transition': 'event_type',
'Resource': 'user'}
parameters['one_timestamp'] = False # Only one timestamp in the log
parameters['include_org_log'] = False
parameters['read_options'] = {
#Production and Purchasing: "%Y-%m-%d %H:%M:%S%z"
#RunningExample: "%Y-%m-%d %H:%M:%S%z"
#ConsultaDataMining201618: "%Y-%m-%d %H:%M:%S%z"
'timeformat': "%Y-%m-%d %H:%M:%S%z",
'column_names': column_names,
'one_timestamp': parameters['one_timestamp'],
'filter_d_attrib': False}
parameters['filename'] = 'ConsultaDataMining201618.xes'
#parameters['filename'] = 'PurchasingExample.xes'
#parameters['filename'] = 'RunningExample.xes'
#parameters['filename'] = 'Production.xes'
parameters['input_path'] = 'GenerativeLSTM/input_files'
parameters['sm3_path'] = os.path.join('GenerativeLSTM','external_tools', 'splitminer3', 'bpmtk.jar')
parameters['bimp_path'] = os.path.join('GenerativeLSTM','external_tools', 'bimp', 'qbp-simulator-engine_with_csv_statistics.jar')
parameters['concurrency'] = 0.0
parameters['epsilon'] = 0.5
parameters['eta'] = 0.7
# Parameters settled manually or catched by console for batch operations
if not argv:
# predict_next, pred_sfx
parameters['activity'] = 'pred_log'
parameters['folder'] = '20250113_FF7FA8C2_1DD4_439F_9497_CFAA42E17814'
parameters['model_file'] = parameters['filename'].split('.')[0] + '.h5'
parameters['log_name'] = parameters['model_file'].split('.')[0]
parameters['is_single_exec'] = False # single or batch execution
# variants and repetitions to be tested Random Choice, Arg Max, Rules Based Random Choice, Rules Based Arg Max
parameters['variant'] = 'Rules Based Random Choice'
parameters['rep'] = 1
else:
# Catch parms by console
try:
parameters['filename'] = config['filename']
parameters['activity'] = config['activity']
parameters['folder'] = config['folder']
parameters['model_file'] = config['model_file']
parameters['log_name'] = config['log_name']
parameters['is_single_exec'] = config['is_single_exec']
parameters['variant'] = config['variant']
parameters['rep'] = config['rep']
except getopt.GetoptError:
print('Invalid option')
sys.exit(2)
print(parameters['folder'])
print(parameters['model_file'])
# Call Simod
call_simod(parameters['filename'])
#Generative model prediction
print(parameters)
pr.ModelPredictor(parameters)
#Call SPMD
spmd = call_spmd(parameters)
#Call Merger
call_merger(parameters, spmd)
if __name__ == "__main__":
main(sys.argv[1:])