-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmonteCarloRouletteSim.py
43 lines (34 loc) · 947 Bytes
/
monteCarloRouletteSim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import random
import numpy as np
import matplotlib.pyplot as plt
num_sets = int(1E8)
all_sets_total = 0
b_max = 500
b0 = 481
f = 1.01
max_games = np.int(np.log(b_max/b0)/np.log(f))+1
set_outcome_results = np.empty(num_sets)
num_games_in_set = np.empty(num_sets)
for i in range(num_sets):
win = False
set_results = 0
set_game_num = 0
while win is False and set_game_num < max_games:
set_game_num += 1
if random.uniform(0, 1) <= 0.48:
#win
win = True
set_results += b0*f**(set_game_num-1)
else:
#loss
set_results -= b0*f**(set_game_num-1)
set_outcome_results[i] = set_results
num_games_in_set[i] = set_game_num
plt.figure()
plt.plot(set_outcome_results)
plt.xlabel("set #")
plt.ylabel("outcome ($)")
plt.title("Ave. Outcome = ${0:.02f}".format(np.mean(set_outcome_results)))
print(np.mean(num_games_in_set))
plt.show()
print('bye')