
Coding Best Practices for the Project: 
 
When completing the refactor, ensure you are complying with each of the following best 
practices: 
 

1. Type Definitions: 
● Let Wasp handle its own types: Instead of writing `type WaspContext = {...}`, let Wasp's 

type system work by using its built-in types. 
○ Example: Use `context: any` in operations rather than defining custom context 

types. 
● Define custom types only for our interfaces: Create interfaces for our specific needs like 

`SaveOnboardingInput`, but don't try to override Wasp's internal types. 
○ Example: `export interface SaveOnboardingInput { webAppUrl?: string; ... }` 

● Keep types aligned with schema: Every type should reflect exactly what's in 
schema.prisma. 

○ Example: If schema has `sredClaimName: String`, our type should be 
`sredClaimName: string`, not `name: string`. 

 

2. Database Operations: 
● Use schema as source of truth: Always check schema.prisma before creating or 

updating database operations. 
○ Example: Using `documentStatusExperiment: 'pending'` because that's the exact 

field name in schema, not `status` or `experimentStatus`. 
● Verify fields exist: Don't assume fields exist just because they make logical sense. 

○ Example: We removed `lastUpdated` because it wasn't in the schema, even 
though it seemed logical to have. 

● Respect Prisma's automatic fields: Some fields like `updatedAt` are handled by Prisma 
automatically. 

○ Example: Don't try to set `updatedAt` manually in updates or creates. 

3. Context Handling: 
● Use Wasp's context: Let Wasp manage how context is structured and accessed. 

○ Example: Access database through `context.entities.SREDClaim` rather than 
creating custom access patterns. 

● Don't redefine delegates: Accept Wasp's delegate types rather than creating our own. 



○ Example: Don't define `type WaspContext = { entities: { ... } }`. 
● Handle optional properties: Be explicit about which properties might be undefined. 

○ Example: Always check `if (!context.user)` before accessing user properties. 
 

4. Error Prevention: 
● Check schema first: Before writing any database operations, verify field names and 

types in schema. 
○ Example: Check if a field is `String?` (optional) or `String` (required) in schema 

before setting defaults. 
● Match schema types: Provide values that match the schema's type definitions. 

○ Example: Use `[]` for fields defined as arrays like `additionalTechnologies 
String[]`. 

● Handle null cases: Explicitly handle cases where values might be null. 
○ Example: `data.companyAnalysis?.businessProblem ?? ''` to handle optional 

values. 

5. Code Organization: 
● Separate types from logic: Keep type definitions at the top of the file, separate from 

implementation. 
○ Example: Put all interfaces at the top of the file, before any function 

implementations. 
● Use interfaces for inputs: Create clear interfaces for complex input objects. 

○ Example: `SaveOnboardingInput` interface for the saveOnboardingData 
function's arguments. 

● Document dependencies: Make it clear what types depend on what other types. 
○ Example: Import statements showing where types come from: `import { 

SREDClaim } from '@prisma/client'`. 

6. Testing: 
● Incremental testing: Make small changes and test each change before moving on. 

○ Example: Fix one type error at a time rather than trying to fix everything at once. 
● Type checking first: Use TypeScript errors as the first line of defense. 

○ Example: Fix all TypeScript errors before testing runtime behavior. 
● Edge case testing: Test with optional fields both present and absent. 

○ Example: Test with both complete and partial `companyAnalysis` objects. 


	Coding Best Practices for the Project: 
	1. Type Definitions: 
	2. Database Operations: 
	3. Context Handling: 
	4. Error Prevention: 
	5. Code Organization: 
	6. Testing: 


