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Abstract—The perspective projection models the way a 3D
scene is transformed into a 2D image, usually through a camera
or an eye. In a projective transformation, parallel lines intersect
in a point called vanishing point. This paper presents in detail
two calibration methods that exploit the properties of vanishing
points. The aim of the paper is to offer a practical tool for the
choice of the appropriate calibration method depending on the
application and on the initial conditions. The methods, using two
respectively three vanishing points, are presented in detail and
are compared. First, the two models are analyzed using synthetic
data. Finally, each method is tested in a real configuration and
the results show the quality of the calibration.

I. INTRODUCTION

C
AMERAS need to be calibrated when they are used in

applications that require object reconstruction or interac-

tion with the world. Tasks such as 3D reconstruction, object

inspection, scene mapping and target or self localization re-

quire metric measurement of the scene. Just capturing images

is not enough.

Explicit camera calibration means that the calibration pro-

cess ends up with a set of physical parameters, obtaining a

detailed model, as close as possible to a full description of

the real system. A comparative review of camera calibration

methods with accuracy evaluation has been published by Salvi

et al. [18]. A remarkable merit of this survey is that it

standardizes notation which enables the easy comparison of

well-known calibration methods such as Tsai [20], Hall [8] or

Faugeras [9]. The proposed models have been later improved

by Zhang [21], Chen [5] or Heikkila [14].

The most common camera model, the pinhole camera,

generates the image through a projective transformation from a

3D Euclidean space onto the image plane. Assuming a perfect

projection, the collinearity of the points is preserved. Thus,

lines in the scene are projected as lines onto the image plane.

An interesting property of the projective space is that parallel

lines intersect in a point on the image, unlike the familiar case
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of the Euclidean space where parallel lines never cross. It is

convenient to say that the point of intersection of parallel lines

is placed at infinity and its projection onto the image plane is

called vanishing point(VP). In this paper we will use the short

notation VPs for vanishing points that belong to orthogonal

directions.

Many methods [17][15][2][19] have been proposed for the

accurate detection of the VPs. The properties of the VPs

are directly related to the focal length and the rotation of

the camera with respect to the world coordinate system.

Caprile [4] and Beardsley [1] were among the first to use

VPs for the estimation of the internal parameters of a camera.

Later on, Hartley and Zisserman [12], Cipolla et al. [6] or

He [13] used VPs with the aim of extracting the camera

parameters. Two similar works [10][16], presented the method

for finding the intrinsic parameters using the calibration sphere

obtained from several images containing two VPs. The authors

explained the relation between the calibration sphere and the

image of the absolute conic, used for extracting the calibration

matrix [12].

The projective transformation consists of a non-singular

linear transformation of homogeneous coordinates:
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The homography P3×4, also known as the projection matrix,

can be decomposed and written as the product of the camera

matrix and the transformation matrix from the world to the

camera coordinate system:

P = K [R t] (2)

The general model of the pinhole camera considers the skew

coefficient between the two image axes, denoted by γ, and the

aspect ratios, or the scale factors, denoted by αu and αv . Thus,

the camera matrix K has the form:
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K =





αuf γ u0

0 αvf v0
0 0 1



 (3)

However, a simplification is often used by taking the skew-

ness to be zero (γ = 0) and the scale factor equal to one, i.e.

αu = αv = 1.

The six extrinsic parameters, that form the rotation and

the translation matrices, are the three rotations and three

translations corresponding to each orthogonal axis. The camera

is calibrated when the intrinsic and extrinsic parameters are

determined.

In the following, we present two camera calibration ap-

proaches that take advantage of the properties of the vanishing

points. The first approach, proposed by Guillou et al. [7], uses

only two vanishing points. The second one was proposed by

Cipolla et al. [6] and uses three vanishing points to determine

the seven parameters of the camera model. The resulting

models from both methods were originally used to build

architectural scene models.

The remainder of this article is structured as follows. The

two methods are presented in detail in Sections 2 and 3

respectively using similar mathematical notations. Section 4

shows experimental results using synthetic and real data for

each method and includes a comparison in terms of the setup

complexity, of the robustness to noise and from the point of

view of the possible applications. Finally, Section 5 presents

the conclusions.

II. CAMERA CALIBRATION USING TWO VANISHING POINTS

Let us consider two coordinate systems: the world coordi-

nate system, centered at Ow and having the orthogonal axes

(xw, yw, zw) and the camera coordinate system, centered at

Oc with the axes (xc, yc, zc). Let the camera projection center

be placed at Oc and the center of the image, denoted by Oi,

be the orthographic projection of Oc on the image plane. Let

the two vanishing points V1 and V2 be the vanishing points

of two axes xw and yw of the world coordinate system, as

shown in Figure 1. The coordinates of the vanishing points, in

the image plane are V1 = (v1i, v1j) and V2 = (v2i, v2j). The

projection of Oi on the line (V1V2) is denoted by Vi.

The principal point is located at the intersection of the

optical axis with the image plane. Its position is crucial [11]

for further calculations implied in the calibration process.

Assuming that the principal point is located at the center of the

image and the aspect ratio is equal to one, i.e. αu = αv = f ,

the intrinsic and extrinsic camera parameters can be obtained

by means of geometric relations [7] using only two vanishing

points.

A. Intrinsic parameters calculation

The image center is considered to be coincident with the

principal point. Thus, its coordinates (u0, v0) are immediately

obtained.

Fig. 1. The focal distance and the orientation of the camera with respect to
the world can be determined from the vanishing points.

The focal distance f can be calculated by considering that

Oc and Oi are placed along the optical axis, as shown in

Figure 1, which means that:

f = ‖OcOi‖ =
√

‖OcVi‖2 − ‖OiVi‖2 (4)

Here, OiVi is the distance from the center of the image to

the horizon line determined by the two vanishing points and

‖OcVi‖ =
√

‖V1Vi‖ · ‖ViV2‖

B. Extrinsic parameters calculation

The rotation between the world and the camera coordinate

systems is expressed by the matrix R. Taking into account

that the two vanishing points V1 and V2 are in the direction of

two orthogonal axes of the world reference system, centered

at Ow, and that all parallel lines meet at a vanishing point, we

can build a new coordinate system centered at Oc and having

the same orientation as the world system by considering the

vectors X′
c
=

−−−→
OcV1, Y′

c
=

−−−→
OcV2 and Z′

c
= X′

c
×Y′

c
.

Therefore, the rotation between the new coordinate system

and the camera coordinate system is the same as the rotation

between the world coordinate system and the camera coordi-

nate system.

The vectors X′
c
,Y′

c
,Z′

c
are:

X′
c
=

−−−→
OcV1

‖
−−−→
OcV1‖

= ( v1i

‖
−−−→
OcV1‖

,
v1j

‖
−−−→
OcV1‖

, f

‖
−−−→
OcV1‖

)

Y′
c
=

−−−→
OcV2

‖
−−−→
OcV2‖

= ( v2i

‖
−−−→
OcV2‖

,
v2j

‖
−−−→
OcV2‖

, f

‖
−−−→
OcV2‖

)

Z′
c
= X′

c
×Y′

c

(5)

And the resulting rotation matrix R is:
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Fig. 2. Projection of a scene segment through a pinhole camera model.
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The last step for the camera calibration is the calculation of

the translation vector t.

Let us consider a segment of known length in the scene,

having the first of its two end points placed at the origin of the

world. Without loss of generality, the center of the world can

be chosen at any point in the scene. The segment is determined

by the world points P1 = [0, 0, 0]T and P2 = [xp2, yp2, zp2]
T ,

represented in metric units, as shown in Figure 2.

Since the rotation matrix R is known, we can align the

segment with its image in the camera coordinate system:

[

PC
1m

PC
2m

]

= R

[

P1

P2

]

(7)

The original segment is imaged by the camera through a

projective transformation resulting in two image points PI
1px

and PI
2px, represented in pixels. In the pinhole model, the

metric coordinates of any point in the image can be calculated

by undoing the pixel transformation, the third coordinate being

the focal distance:

ICim = PI
ipx − [u0 v0]

T (8)

We can now translate the segment on the image plane by

setting its first point on its image PI
1m and calculating the

position of the second point. Thus, the translated segment is

represented by the points P′
1 and P′

2:

P′
1 = IC1m

P′
2 = IC1m + (PC

2m −PC
1m)

(9)

The obtained segment is parallel to the original one thus

forming two similar triangles △OCP1P2 and △OCP
′
1Q, as

shown in Figure 2.

Taking advantage of the properties of similar triangles, we

can write:

‖OcP1‖

‖OcP
′
1‖

=
‖P1P2‖

‖P ′
1Q‖

(10)

Therefore, the distance D from the camera center to the

world center can be calculated as:

D = ‖OcP1‖ =
‖OcP

′
1‖ · ‖P1P2‖

‖P ′
1Q‖

(11)

Hence, the translation vector is:

t = D
OcP

′
1

‖OcP
′
1‖

III. CAMERA CALIBRATION USING THREE VANISHING

POINTS

This approach uses three VPs determined from orthogonal

directions in the scene. We assume that three vanishing points

can be determined in the image from known patterns, such as

two orthogonal checkered patterns. VPs detection methods in

unstructured scenes are not discussed here as this topic falls

beyond the subject of this paper.

A. Intrinsic parameters calculation

In the current approach, we consider the principal point to

be located at the center of the image, the skewness is zero

(γ = 0) and the scale factor is equal to one, i.e. αu = αv =
f . Thus, the camera matrix presented in equation (3) has a

simplified form:

K =





f 0 u0

0 f v0
0 0 1



 (12)

Determining the location of the principal point is straight

forward as the image size is known. The only intrinsic

parameter to be calculated is the focal distance.

Let three vanishing points corresponding to mutually or-

thogonal directions be projected onto the image plane, through

the following homography:





λ1u1 λ2u2 λ3u3

λ1v1 λ2v2 λ3v3
λ1 λ2 λ3



 = P3×4









1 0 0
0 1 0
0 0 1
0 0 0









(13)

The three vanishing points can be expressed, up to scale,

as:
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V1 = λ1

[

u1 v1 1
]T

V2 = λ2

[

u2 v2 1
]T

V3 = λ3

[

u3 v3 1
]T

(14)

Considering the decomposition of the projection matrix,

shown in equation (2), we can write:

[

V1 V2 V3

]

= K [R|t]









1 0 0
0 1 0
0 0 1
0 0 0









Taking into account the effect of the multiplication of the

homogeneous points at infinity with the translation vector, we

obtain:

[

V1 V2 V3

]

= KR (15)

Using the camera matrix K, as shown in expression (12),

the rotation matrix R can be written as,

R =







λ1(u1−u0)
f

λ2(u2−u0)
f

λ3(u3−u0)
f

λ1(v1−v0)
f

λ2(v2−v0)
f

λ3(v3−v0)
f

λ1 λ2 λ3






(16)

Using the orthogonality property of the rotation matrix and

applying it to its first two columns, we obtain

λ1λ2(
(V1 −Oi)(V2 −Oi)

f2
+ 1) = 0 (17)

Since λi 6= 0, the focal distance can be calculated as:

f =
√

|(Oi − V1)(V2 −Oi)| (18)

B. Extrinsic parameters calculation

The extrinsic parameters are part of the rotation matrix R

and the translation vector t. The rotation matrix, presented in

equation (16), can be calculated if the scaling factors λi are

determined. In order to calculate them, equation (15) can be

rearranged by separating the scaling factors λi and using the

multiplication of the homogeneous points at infinity with the

translation vector:





u1 u2 u3

v1 v2 v3
1 1 1









λ1 0 0
0 λ2 0
0 0 λ3



 = KR (19)

Multiplying equation (19) on both sides by (KR)T , and

considering the orthogonality constraint of the rotation matrix,

we obtain,





u1 u2 u3

v1 v2 v3
1 1 1






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λ2
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0 λ2

2 0
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3









u1 v1 1
u2 v2 1
u3 v3 1



 = KKT

(20)

A matrix Q can be defined as,

Q = KK
T

=





f2 + u2
0 u0v0 u0

u0v0 f2 + v20 v0
u0 v0 1



 (21)

The vector containing the scaling factors λi can be separated

by rearranging equations (20) and (21):
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(22)

The scale factors can be calculated by singular value de-

composition on the system of equations (22) and the rotation

matrix can be determined.

Note that, if the scaling factors are known, the left hand

side of equation (20) is determined and the intrinsic param-

eters can be directly calculated by identifying their values in

equation (21).

When three vanishing points, obtained from mutual orthogo-

nal directions in the scene, are available, an alternative method

for calculating the coordinates of the principal point (u0, v0)
can be used by finding the orthocenter of the triangle formed

by the vanishing points [12][6].

The translation vector t is the vector pointing from the

camera origin to the world origin and is given by the last

column of the projection matrix. The projection of the world

coordinate system is obtained from equation (1), setting the

values xi = 0, yi = 0, zi = 0 for an randomly chosen origin

point. The translation obtained from a single view without

additional information of the scene will be up to scale, with

λi having an arbitrary value.

If additional information is available, such as the length

of a segment or the coordinates of points in the scene, the

translation vector can be accurately extracted.

Let ri be the ith row of the rotation matrix and Pwi =
(xi, yi, zi, 1)

T be a point of the scene, projected onto the

image plane.


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λiui
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 = K [R|t]
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xi

yi
zi
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
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

(23)

Then, the following system of equations is obtained:

λiui = αur1Pwi + u0r3Pwi + αut1 + u0t3 (24a)

λivi = αvr2Pwi + v0r3Pwi + αvt2 + v0t3 (24b)

λi = r3Pwi + t3 (24c)

which leads to,

r3Pwui + t3ui = fr1Pw + u0r3Pw + ft1 + u0t3 (25a)

r3Pwvi + t3vi = fr2Pw + v0r3Pw + ft2 + v0t3 (25b)
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That can be expressed in a compact form as,

[

f 0 u0 − ui

0 f v0 − vi

]





t1
t2
t3



 =

[

r3Pw(ui − u0)− f(r1Pw)
r3Pw(vi − v0)− f(r2Pw)

]

(26)

The components of the translation vector can be calculated

by stacking equations (26) for several pairs of image and

scene points and solving the resulting system using singular

value decomposition. Finding three vanishing points requires

at least six points, placed on three mutually orthogonal axes

in the scene, which can also be used for the calculation of the

translation vector.

IV. EXPERIMENTAL RESULTS

A set of experiments have been conducted in order to

explore the robustness to noise of the implemented methods.

The advantage of working with a synthetic environment is that

absolute ground truth values can be obtained. In real scenes the

noise is usually present at the image level, therefore, Gaussian

noise has been gradually added on the image and the camera

was calibrated using the affected images.

Knowing the position of the VPs, the camera model can be

estimated using the calibration methods presented previously.

This step was done iteratively for increasing gaussian noise

levels. For each level, 50 iterations have been worked out in

order to obtain a result as close as possible to the typical

behavior of each method.

The effects of the noise on the calibration model were

measured by calculating the error on three outputs: the image,

the intrinsic parameters and the extrinsic parameters.

The image error was calculated as the distance between

the reference points and the re-projected ones using the

resulting calibrated model. The intrinsic parameters, namely

αu and αv , and the extrinsic parameters, i.e. the rotation and

the translation between the camera and the world reference

systems, were compared with the reference ones.

A. Synthetic camera calibration using two VPs

The synthetic setup for the calibration using two VPs is

presented in Figure 3. The coplanar points, placed in the

world reference system, were projected using the ideal camera

model. From the resulting image, the two VPs are extracted

as shown in Figure 4. When the noise level increases, the VPs

start moving from the original position. Fig. 5 shows that V1

is more affected by the noise than V2 because it is located at

a larger distance from the image center.

B. Synthetic camera calibration using three VPs

Camera calibration with three VPs has been analyzed using

a setup formed by a virtual camera pointing to a cloud of

3D points, as shown in Figure 6. The 3D points belong to

two orthogonal planes in the world reference system and were

imaged by the modeled camera. The three VPs are extracted

from the image as shown in Figure 7. The position of the

image center is also illustrated as the orthocenter of the triangle

Fig. 3. Experimental setup for camera calibration using two VPs

Fig. 4. VPs from two orthogonal directions.

Fig. 5. VPs deviation due to the noise.
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Fig. 6. Experimental setup for synthetic camera calibration using three VPs

Fig. 7. VPs from three orthogonal directions and the image center.

formed by the three VPs. The noise level affects the VPs

because the equations of the parallel lines change and so

does their crossing point. When dealing with three VPs, their

positions change proportionally with the distance from the

image center, as shown in Figure 8.

Fig. 8. VPs deviation due to the noise.

Fig. 9. Projection error using the camera model calibrated from the noisy
images.

Fig. 10. Intrinsic parameters estimation error using the camera model
calibrated from the noisy images.

C. Noise robustness analysis

The outputs of the calibration process have been evaluated

for both calibration methods and the evolution of the errors,

as a function of the noise, was compared. Fig. 9 shows the

projection error obtained by using the two camera models

calibrated from the noisy images. Fig. 10 illustrates the evolu-

tion of the intrinsic parameters. The extrinsic parameters are

also increasingly deviating from the ideal values, as shown

in Figure 11. As expected, in all cases the error increases as

the noise level grows. Both calibration methods have a similar

behavior up to a certain level of noise. However, the method

using two VPs shows better performance for a high amount

of noise. This is due to the fact that the calibration plane has

been previously chosen as the best initial solution among the

12 possible configurations.
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Fig. 11. Extrinsic parameters estimation error using the camera model
calibrated from the noisy images.

Fig. 12. Grid points extraction from the calibration pattern.

D. Real camera calibration using two VPs

The 2 VPs calibration has been tested using a real camera.

The position of the VPs was calculated from the images

in three steps. First, the points of the pattern have been

detected using a function of the camera calibration toolbox

of Bouguet [3], see Figure 12. Then, parallel lines were

fitted to the points on the direction of the VP. At last, the

intersection of all the lines was calculated by solving the

overdetermined system of line equations using singular value

decomposition and obtaining their optimal crossing point as

shown in Figure 13.

The camera was calibrated using a pattern from a projector

as part of a structured light reconstruction experiment. The

obtained reconstruction of a hand is shown in Figure 14 and

proves that the calibration was correct.

E. Real camera calibration using three VPs

The camera calibration using three VPs was applied for the

reconstruction of a 3D cube build using Google SketchUp.

Two images of the cube were taken, see Figure 15, and the

camera’s parameters and position with respect to the world

was calculated using the three vanishing points resulting from

Fig. 13. VPs detection from a planar pattern.

Fig. 14. Hand reconstruction using a structured light system.

the cube. Using the correspondences and the camera model,

the object reconstruction was obtained from the two images

and the texture was mapped correspondingly, as shown in

Figure 16.

V. CONCLUSION

Two camera calibration methods, based on vanishing points,

have been presented in detail in this paper, using a standardized

Fig. 15. Two images of a cube presenting three vanishing points.
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Fig. 16. Reconstruction of a cube from two images with the camera calibrated
using three VPs.

mathematical formalization for both of them. Our goal was to

analyze the performance of these methods and to highlight

their advantages and disadvantages.
In terms of the calibration setup complexity, the method

using only two VPs is clearly easier to use since we only

need a simple planar pattern capable of producing two VPs in

orthogonal directions. However, the camera must be carefully

oriented with respect to the calibration pattern in order to avoid

obtaining VPs at infinity. Moreover, special care must be taken

when defining the world reference system as the two VPs

can be placed along any two axes. Therefore, this calibration

method is more suitable for controlled configurations in which

it is possible to have a good initial estimation of the orientation

of the camera with respect to the world.
Regarding robustness to noise, which has been checked in

perfectly controlled simulation conditions, the two methods

have similar performances up to a reasonable level of noise

with the two VPs method performing a little better thanks to

more rigorous initial constraints.
One reason to prefer a method against another is from the

point of view of the possible applications. Sometimes it is

impossible to have a perfectly determined 3D structure in the

scene and the 2D plane can be found easier. On the other

hand, if it is possible to determine a 3D structure we can

benefit from a more robust calibration and, thus, the resulting

model is more accurate.

REFERENCES

[1] Paul Beardsley and David Murray. Camera calibration using vanishing
points. The British Machine Vision Conference (BMVC), pages 416–425,
1992.

[2] Michael Bosse, Richard Rikoski, John Leonard, and Seth Teller. Van-
ishing points and three-dimensional lines from omni-directional video.
The Visual Computer, 19:417–430, 2003.

[3] J. Bouguet. Camera calibration toolbox for matlab, 2004.
[4] B. Caprile and V. Torre. Using vanishing points for camera calibration.

Int. J. Computer Vision, 4(2):127–140, 1990.
[5] X. Chen, J. Davis, and P. Slusallek. Wide area camera calibration using

virtual calibration object. Proc. CVPR 00, pages 2520–2527, 2000.
[6] R. Cipolla, T. Drummond, and D. Robertson. Camera calibration from

vanishing points in images of architectural scenes. BMVC99, pages
382–391, 1999.

[7] Guillou E., Meneveaux D., Maisel E., and Bouatouch K. Using vanishing
points for camera calibration and coarse 3d reconstruction from a single
image. The Visual Computer, 16:396–410, 2000.

[8] Hall E.L., Tio J.B.K., McPherson C.A., and F.A. Sadjadi. Measuring
curved surfaces for robot vision,. Computer, 15:42, 1982.

[9] O. D. Faugeras and G. Toscani. The calibration problem for stereo.
Proceedings of IEEE Computer Vision and Pattern Recognition, pages
15–20, 1986.

[10] L. Grammatikopoulos, G. Karras, and E. Petsa. Camera calibration
combining images with two vanishing points. International Archives of

the Photogrammetry, Remote Sensing & Spatial Information Sciences.,
35(5):99–104, 2004.

[11] R. Hartley and R. Kaucic. Sensitivity of calibration to principal point
position. pages 433–446, 2002.

[12] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision – 2nd Edition. Cambridge University Press, 2004.
[13] B.W. He and Y.F. Li. A novel method for camera calibration using

vanishing points. 14th International Conference on Mechatronics and

Machine Vision in Practice, pages 44 – 47, 2007.
[14] J. Heikkila and O. Silven. A four-step camera calibration procedure

with implicit image correction. CVPR, page 1106ij1112, 1997.
[15] J. Kogecka and W. Zhang. Effcient computation of vanishing points.

IEEE International Conference on Robotics and Automation, 1:223–228,
2002.

[16] Dong Hoon Lee, Kyung Ho Jang, and Soon Ki Jung. Intrinsic camera
calibration based on radical center estimation. The 2004 International

Conference on Imaging Science, Systems, andTechnology,, pages 7–13,
2004.

[17] Carsten Rother. A new approach for vanishing point detection in
architectural environments. Journal Image and Vision Computing (IVC;

Special Issue on BMVC 2000), vol. 20, no. 9-10:pp. 647–656, January
2002.

[18] J. Salvi, X. Armangué, and J. Batlle. A comparative review of camera
calibrating methods with accuracy evaluation. Pattern Recognition, 7:35,
2002.

[19] J.P. Tardif. Non-iterative approach for fast and accurate vanishing point
detection. IEEE 12th International Conference on Computer Vision,
pages 1250–1257, 2009.

[20] R. Tsai. A versatile camera calibration technique for high-accuracy 3d
machine vision metrology using off-the-shelf tv cameras and lenses.
IEEE Journal of Robotics and Automation, 3:323, 1987.

[21] Z. Zhang. A flexible new technique for camera calibration. msr-tr-98-71.
Technical report, Microsoft Research, Redmond, USA, 1998.

130 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012


