May 2024

RISC-V Push/Pop & Frame
Pointer Proposal

Version 0.2

James Ball
jameball@qti.qualcomm.com

Overview

Problem

« Compiler can’t use Zc push/pop instructions when frame pointer requested
» Results in significant code size impact due to omission of push/pop instructions

What is a Frame Pointer (FP)?

» Optional software managed linked list of function call frames using the FP register (x8 AKA s0)

History

» Push/pop stack order consistent with future potential load/store multiple instructions rather than ABI order
» See GitHub Issue 194 and Code Size TG post

» ABI 1.1 specifies portion of stack order when FP present
* Not yet ratified but already implemented across all toolchains
» Too late to change ABI 1.1 and toolchains (could break backwards-compatibility)

Motivation for Push/Pop and FP

» FP allows stack backtrace without requiring access to debug information in ELF (not always available)
» Can’t find return address (variable offset relative to current SP) or caller’s stack frame without FP
« Example scenarios

» Program detects a fatal condition and wants to print stack track before exiting

» Debugging on hardware when ELF debug information isn’t present

https://github.com/riscv/riscv-code-size-reduction/issues/194
https://lists.riscv.org/g/tech-code-size/topic/84238872

Background

Frame Pointer 101

Enabled by compiler option
» -fno-omit-frame-pointer

Creates linked list of stack
frames

* Current FP points to head

ABI 1.1 defines fixed FP
relationships

* FP — SP when called
e FP-1*XLEN/8 — Return Address
e FP-2*XLEN/8 — Caller's FP

Source sample text

Function A
Stack Frame

Function B
Stack Frame

Function C
Stack Frame

<

<

4 Return Address

(- | Return Address

¢~ | Return Address

Function Call Order
AP BPC

Stack

Caller's FP (Null)

Other Saved
Registers and
Locals

Caller's FP

Other Saved
Registers and
Locals

Caller’'s FP

Other Saved
Registers and
Locals

Decreasing
Memory
Addresses

Current FP

Current SP
(Top of stack)

RISC-V ABI vs. Zc Push/Pop Stack
Zc push/pop instructions store ra & sO opposite order to RISC-V ABI 1.1

Same layout
even if fp not
present

S\ P

(fp-4
fp-8

Current

Stack 3

\Sp

ABI 1.1 Stack

Layout

Caller’s Stack

saved ra (x1)

saved sO/fp (x8)

Other saved
registers

locals

sp

Caller’s Stack

Other saved
registers

saved sO (x8)

saved ra (x1)

locals

Stack Layout of
Zc Push/Pop

/

Implication: Compiler can’t use push/pop when frame pointer requested

Register | ABI Name | Description Saver
. x0 zero Hard-wired zero —
Incom p(ﬂ'l ble x1 ra Return address Caller
with ABI 1.1 x2 sp Stack pointer Callee
. x3 gp Global pointer —
frame pomter x4 tp Thread pointer —
ICIYOUi x5 t0 Temporary/alternate link register | Caller
x6—7 t1-2 Temporaries Caller
| x8 s0/fp Saved register /frame pointer Callee
x9 s1 Saved register Callee
x10-11 | a0-1 Function arguments/return values | Caller
x12-17 | a2-7 Function arguments Caller
Current x18-27 | s2-11 Saved registers Callee
x28-31 | t3-6 Temporaries Caller
Stack £0-7 f£t0-7 FP temporaries Caller
£8-9 fs0-1 FP saved registers Callee
£10-11 | fa0-1 FP arguments/return values Caller
Shown with £12-17 | fa2-7 FP arguments Caller
£18-27 | fs2-11 FP saved registers Callee
XLEN=32 £28-31 | ft8-11 FP temporaries Caller

Zc Push/Pop Instruction Equivalents

Examples assume XLEN=32

cm.push {ra, s0-s2},-16 equivalent to:

SW s2,
SW sl,
SW sQ,
SW ra,
addi sp,

Extra instruction
to manage fp

Compiler with FP

SW ra, -4(sp)
SW sO0, -8(sp)
SW sl, -12(sp)
SW s2, —-16(sp)

mov fp, sp
addi sp, sp, -16

Order reversed
from push/pop

sO is fp

Save initial sp in fp

Solutions

Constraints on Solutions

Don’t break ecosystem that uses the FP

« Stack backtrace utility function breaks if ABI 1.1 layout changed to match push/pop

» Code assumes mem[fp-4] = “saved ra” and mem|fp-8] = “saved fp”

» Code pre-compiled in library couldn’t even have #ifdef added into source for additional layout option
» Could in theory have other software that relies on stack layout

Don’t break ecosystem not using FP

« Changing order of existing push/pop instructions could break software in theory
» Code could do load/store to stack contents added by push instruction
* Not sure this use case needs support
* Debugger might rely on existing stack layout
» Hopefully, DWARF debug information in ELF describes layout and debugger uses this
» Order can’t be controlled by a new CSR bit since DWARF specifies layout statically

Don’t create a burden for RISC-V community

* Qualcomm needs a standard solution with compiler & tools support that can be upstreamed
* Non-standard solution creates ongoing burden of adding support to RISC-V GCC/LLVM on every release

(o]

Source sample text

Two Potential Solutions

1. Create new HW extension to change push/pop order to match ABI
* Presence of new extension in an implementation means order always changed

2. Create new push/pop instructions to match ABI
» Uses additional opcode space

cm.push cm.pop/popret/popretz
Just reverse order of register numbers Just reverse order of register numbers like in cm.push

(e.g.,1,8,9, .., 26, 27)
if (XLEN==32) bytes=4; else bytes=8;

if (XLEN==32) bytes=4; else bytes=8;
addr=sp+stack_adj-bytes;

addr=sp-bytes; for(i in 27,26,25,24,23,22,21,20,19,18,9,8,1) {
for(i in 27,26,25,24,23,22,21,20,19,18,9,8,1) { //1f register i is in xreg_list
//1f register 1 is in xreg_list if (xreg_list[i]) {
if (xreg_Llist[i]) { switch(bytes) {
switch(bytes) { 4: asm("lw x[1], 0(addr)");
4: asm("sw x[1], @(addr)"); 8: asm("ld x[i], 0(addr)");
8: asm("sd x[1], @(addr)"); }
} addr-=bytes;
addr-=bytes; 1
} }

} spt=stack_adj;

Addition to Proposed Solution - New cm.pushfp instruction

Eliminates code size penalty of including FP

Same behavior as cm.push except saves initial sp value to fp
« Same arguments as cm.push but only used when FP present
» Don’t need cm.popfp since cm.pop instructions can already pop FP (x8 AKA s0)
* Qualcomm is patenting cm.pushfp and will donate patent to RVI

Is cm.pushfp worth adding?
» Uses 6 bits of 16-bit opcode space
» Saves 2 bytes in every function’s prologue
» Other Zcmp instructions with same cost offer lower code size reduction
* For example, cm.popretz saves 2 bytes only when function returns zero

Mnemonic |15|14|13|12|11|10|09|08|07|06|05|04|03| 02 n1|n£: Description Comment

7 funch ris' |func2| r2s' |opcode CMMV-type
CM.MVSADL 1|0f1|0]j1|1 rls' 0f1 r2s' 1| 0 |Move 2registers: rls'=a0; r2s'=al Matching encoding Zemp CM.MVSAO1L
CM.MVAD1S 1|o0j1|0|1|1 ris' 111 ras' 1| 0 |Move 2registers: a0 =rl1s'; al =r2s' Matching encoding Zemp CM.MVAD1S

funce func2 urlist spimmijopcode CMPP-type

CM.PUSH l|o0f1|1|1|0f0|0 urlist [5:4] | 1 | 0 |Function entrance (prologue), including stack allocation Matching encoding Zcmp CM.PUSH
CM.PUSHFP 1|o0j1|1|1|0|0|1 urlist [5:4] | 1| 0 |Function entrance [prologue), including stack allocation and frame paointer New proposed instruction
CM.POP l1|o0f1|1|1|0f1|0 urlist [5:4] | 1 | 0 |Function epilogue , including stack deallocation Matching encoding Zcmp CM.POP
CM.POPRETZ 1|0j1|1|1|1|0|0O urlist [5:4] | 1| 0 |Function exit with return zero [epilogue) , including stack deallocation, a0 =0 Matching encoding Zemp CM.POPRET
CM.POPRET 1jof1|1|1|1|1|0 urlist [5:4] | 1| 0 |Function exit (epilogue) , including stack deallocation Matching encoding Zcmp CM.POPRETZ

What RISC-V ABI 1.1 says about Frame Pointer

From https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc

Code that uses a frame pointer will construct a linked list of stack frames, where each frame links to its caller using a "frame record". A frame
record consists of two XLEN values on the stack; the return address and the link to the next frame record. The frame pointer register will point
to the innermost frame, thereby starting the linked list. By convention, the lowest XLEN value shall point to the previous frame, while the next
XLEN value shall be the return address. The end of the frame record chain is indicated by the address zero appearing as the next link in the

chain.

After the prologue, the frame pointer register will point to the Canonical Frame Address or CFA, which is the stack pointer value on entry to the
current procedure. The previous frame pointer and return address pair will reside just prior to the current stack address held in fp . This puts
the return address at fp - XLEN/8 , and the previous frame pointer at fp - 2 * XLEN/S .

https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc

	RISC-V Push/Pop & Frame Pointer Proposal��Version 0.2
	Overview
	Background
	Frame Pointer 101
	RISC-V ABI vs. Zc Push/Pop Stack
	Zc Push/Pop Instruction Equivalents
	Solutions
	Constraints on Solutions
	Two Potential Solutions
	Addition to Proposed Solution – New cm.pushfp instruction
	Backup
	What RISC-V ABI 1.1 says about Frame Pointer

