
James Ball

jameball@qti.qualcomm.com

RISC-V Push/Pop & Frame
Pointer Proposal

Version 0.2

May 2024

2

Overview

Problem
• Compiler can’t use Zc push/pop instructions when frame pointer requested
• Results in significant code size impact due to omission of push/pop instructions

What is a Frame Pointer (FP)?
• Optional software managed linked list of function call frames using the FP register (x8 AKA s0)

History
• Push/pop stack order consistent with future potential load/store multiple instructions rather than ABI order

• See GitHub Issue 194 and Code Size TG post
• ABI 1.1 specifies portion of stack order when FP present

• Not yet ratified but already implemented across all toolchains
• Too late to change ABI 1.1 and toolchains (could break backwards-compatibility)

Motivation for Push/Pop and FP
• FP allows stack backtrace without requiring access to debug information in ELF (not always available)
• Can’t find return address (variable offset relative to current SP) or caller’s stack frame without FP
• Example scenarios

• Program detects a fatal condition and wants to print stack track before exiting
• Debugging on hardware when ELF debug information isn’t present

https://github.com/riscv/riscv-code-size-reduction/issues/194
https://lists.riscv.org/g/tech-code-size/topic/84238872

3

Background

4Source sample text

Frame Pointer 101

Other Saved
Registers and

Locals

Other Saved
Registers and

Locals

Other Saved
Registers and

Locals

Decreasing
Memory

Addresses

Function Call Order

Return Address
Caller’s FP

Function A
Stack Frame

Function B
Stack Frame

Function C
Stack Frame

Return Address
Caller’s FP

Return Address
Caller’s FP (Null)

BA C

Current FP

Current SP
(Top of stack)

Stack
Enabled by compiler option

• -fno-omit-frame-pointer

Creates linked list of stack
frames
• Current FP points to head

ABI 1.1 defines fixed FP
relationships
• FP → SP when called
• FP-1*XLEN/8 → Return Address
• FP-2*XLEN/8 → Caller’s FP

5

RISC-V ABI vs. Zc Push/Pop Stack
Zc push/pop instructions store ra & s0 opposite order to RISC-V ABI 1.1

Implication: Compiler can’t use push/pop when frame pointer requested

6Source sample text

Zc Push/Pop Instruction Equivalents

cm.push {ra, s0-s2},-16 equivalent to:

 sw s2, -4(sp)
 sw s1, -8(sp)
 sw s0, -12(sp)
 sw ra, -16(sp)
 addi sp, sp, -16

Compiler with FP

sw ra, -4(sp)
sw s0, -8(sp) # s0 is fp
sw s1, -12(sp)
sw s2, -16(sp)
mov fp, sp # Save initial sp in fp
addi sp, sp, -16

Order reversed
from push/pop

Examples assume XLEN=32

Extra instruction
to manage fp

7

Solutions

8Source sample text

Constraints on Solutions

Don’t break ecosystem that uses the FP
• Stack backtrace utility function breaks if ABI 1.1 layout changed to match push/pop

• Code assumes mem[fp-4] = “saved ra” and mem[fp-8] = “saved fp”
• Code pre-compiled in library couldn’t even have #ifdef added into source for additional layout option

• Could in theory have other software that relies on stack layout

Don’t break ecosystem not using FP
• Changing order of existing push/pop instructions could break software in theory

• Code could do load/store to stack contents added by push instruction
• Not sure this use case needs support

• Debugger might rely on existing stack layout
• Hopefully, DWARF debug information in ELF describes layout and debugger uses this
• Order can’t be controlled by a new CSR bit since DWARF specifies layout statically

Don’t create a burden for RISC-V community
• Qualcomm needs a standard solution with compiler & tools support that can be upstreamed
• Non-standard solution creates ongoing burden of adding support to RISC-V GCC/LLVM on every release

9

Two Potential Solutions
1. Create new HW extension to change push/pop order to match ABI

• Presence of new extension in an implementation means order always changed
2. Create new push/pop instructions to match ABI

• Uses additional opcode space

cm.push
Just reverse order of register numbers

(e.g., 1, 8, 9, …, 26, 27)

cm.pop/popret/popretz
Just reverse order of register numbers like in cm.push

10

Addition to Proposed Solution – New cm.pushfp instruction

Same behavior as cm.push except saves initial sp value to fp
• Same arguments as cm.push but only used when FP present
• Don’t need cm.popfp since cm.pop instructions can already pop FP (x8 AKA s0)
• Qualcomm is patenting cm.pushfp and will donate patent to RVI

Is cm.pushfp worth adding?
• Uses 6 bits of 16-bit opcode space
• Saves 2 bytes in every function’s prologue
• Other Zcmp instructions with same cost offer lower code size reduction

• For example, cm.popretz saves 2 bytes only when function returns zero

Eliminates code size penalty of including FP

11

Backup

12

What RISC-V ABI 1.1 says about Frame Pointer
From https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc

https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc

	RISC-V Push/Pop & Frame Pointer Proposal��Version 0.2
	Overview
	Background
	Frame Pointer 101
	RISC-V ABI vs. Zc Push/Pop Stack
	Zc Push/Pop Instruction Equivalents
	Solutions
	Constraints on Solutions
	Two Potential Solutions
	Addition to Proposed Solution – New cm.pushfp instruction
	Backup
	What RISC-V ABI 1.1 says about Frame Pointer

