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Overview

Problem
• Compiler can’t use Zc push/pop instructions when frame pointer requested
• Results in significant code size impact due to omission of push/pop instructions

What is a Frame Pointer (FP)?
• Optional software managed linked list of function call frames using the FP register (x8 AKA s0)

History
• Push/pop stack order consistent with future potential load/store multiple instructions rather than ABI order

• See GitHub Issue 194 and Code Size TG post
• ABI 1.1 specifies portion of stack order when FP present

• Not yet ratified but already implemented across all toolchains
• Too late to change ABI 1.1 and toolchains (could break backwards-compatibility)

Motivation for Push/Pop and FP
• FP allows stack backtrace without requiring access to debug information in ELF (not always available)
• Can’t find return address (variable offset relative to current SP) or caller’s stack frame without FP
• Example scenarios

• Program detects a fatal condition and wants to print stack track before exiting
• Debugging on hardware when ELF debug information isn’t present

https://github.com/riscv/riscv-code-size-reduction/issues/194
https://lists.riscv.org/g/tech-code-size/topic/84238872
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Background
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Frame Pointer 101

Other Saved 
Registers and 

Locals

Other Saved 
Registers and 

Locals

Other Saved 
Registers and 

Locals

Decreasing 
Memory 

Addresses

Function Call Order

Return Address
Caller’s FP

Function A
Stack Frame

Function B
Stack Frame

Function C
Stack Frame

Return Address
Caller’s FP

Return Address
Caller’s FP (Null)

BA C

Current FP

Current SP
(Top of stack)

Stack
Enabled by compiler option

• -fno-omit-frame-pointer

Creates linked list of stack 
frames
• Current FP points to head

ABI 1.1 defines fixed FP 
relationships
• FP → SP when called
• FP-1*XLEN/8 → Return Address
• FP-2*XLEN/8 → Caller’s FP
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RISC-V ABI vs. Zc Push/Pop Stack
Zc push/pop instructions store ra & s0 opposite order to RISC-V ABI 1.1

Implication: Compiler can’t use push/pop when frame pointer requested
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Zc Push/Pop Instruction Equivalents

cm.push {ra, s0-s2},-16 equivalent to:

 sw s2,   -4(sp)
 sw s1,   -8(sp)
 sw s0,  -12(sp)
 sw ra,  -16(sp)
 addi sp, sp, -16

Compiler with FP

sw ra,  -4(sp)
sw s0,  -8(sp)  # s0 is fp
sw s1, -12(sp)
sw s2, -16(sp)
mov  fp, sp    # Save initial sp in fp
addi sp, sp, -16

Order reversed 
from push/pop

Examples assume XLEN=32

Extra instruction 
to manage fp
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Solutions
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Constraints on Solutions

Don’t break ecosystem that uses the FP
• Stack backtrace utility function breaks if ABI 1.1 layout changed to match push/pop

• Code assumes mem[fp-4] = “saved ra” and mem[fp-8] = “saved fp”
• Code pre-compiled in library couldn’t even have #ifdef added into source for additional layout option

• Could in theory have other software that relies on stack layout

Don’t break ecosystem not using FP
• Changing order of existing push/pop instructions could break software in theory

• Code could do load/store to stack contents added by push instruction
• Not sure this use case needs support

• Debugger might rely on existing stack layout
• Hopefully, DWARF debug information in ELF describes layout and debugger uses this
• Order can’t be controlled by a new CSR bit since DWARF specifies layout statically

Don’t create a burden for RISC-V community
• Qualcomm needs a standard solution with compiler & tools support that can be upstreamed
• Non-standard solution creates ongoing burden of adding support to RISC-V GCC/LLVM on every release
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Two Potential Solutions
1. Create new HW extension to change push/pop order to match ABI

• Presence of new extension in an implementation means order always changed
2. Create new push/pop instructions to match ABI

• Uses additional opcode space

cm.push
Just reverse order of register numbers

(e.g., 1, 8, 9, …, 26, 27)

cm.pop/popret/popretz
Just reverse order of register numbers like in cm.push
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Addition to Proposed Solution – New cm.pushfp instruction

Same behavior as cm.push except saves initial sp value to fp
• Same arguments as cm.push but only used when FP present
• Don’t need cm.popfp since cm.pop instructions can already pop FP (x8 AKA s0)
• Qualcomm is patenting cm.pushfp and will donate patent to RVI

Is cm.pushfp worth adding?
• Uses 6 bits of 16-bit opcode space
• Saves 2 bytes in every function’s prologue
• Other Zcmp instructions with same cost offer lower code size reduction

• For example, cm.popretz saves 2 bytes only when function returns zero

Eliminates code size penalty of including FP
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Backup
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What RISC-V ABI 1.1 says about Frame Pointer
From https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc

https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc
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