Skip to content

Support Matrix Multiplication #291

@CGMossa

Description

@CGMossa

Benchmarking an R+deSolve code against the equivalent odin code yielded a surprising result:

# A tibble: 2 × 13
  expression      min   median `itr/sec` mem_alloc `gc/sec` n_itr  n_gc total_time result memory     time      
  <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl> <int> <dbl>   <bch:tm> <list> <list>     <list>    
1 odin_c        303ms    305ms      3.28    8.59MB      0       2     0      610ms <NULL> <Rprofmem> <bench_tm>
2 deSolve_r     121ms    121ms      8.23   38.04MB     24.7     1     3      121ms <NULL> <Rprofmem> <bench_tm>
# ℹ 1 more variable: gc <list>

I suspect the culprit is the lack of matrix multiplication in odin (or maybe I don't know how to invoke it).
In the deSolve part:

between_sites <- transmission_rate * S * (foi_matrix %*% I)

However, in the odin part I do:

foi[, ] <- transmission_rate * foi_mat[i, j] * I[j]
delta_transmission[] <- transmission_rate * S[i] * I[i] + transmission_rate * S[i] * sum(foi[i,])
  deriv(S[]) <- -delta_transmission[i]
  deriv(I[]) <- +delta_transmission[i] - delta_recovery[i]

Here I've omitted the parts I don't think are necessary.

  • Is matrix multiplication supported?
    Unfortunately, R's C-facilities have a weird way of doing matrix multiplication, so it might not be supported yet.

I'll work on a minimal testcase to check if this is indeed the problem.

Under details, I have more complete excerpts of my code:

Details

odin::odin({
  foi[, ] <- foi_mat[i, j] * I[j]
  delta_transmission[] <- transmission_rate * S[i] * I[i] + transmission_rate * S[i] * sum(foi[i,])
  delta_recovery[] <- recovery_rate * I[i]
  deriv(S[]) <- -delta_transmission[i]
  deriv(I[]) <- +delta_transmission[i] - delta_recovery[i]
  deriv(R[]) <- delta_recovery[i]

  source_id <- user()
  target_id <- user()
  Total[] <- S[i] + I[i] + R[i]
  output(source_prevalence) <- I[as.integer(source_id)] / Total[as.integer(source_id)]
  output(target_prevalence) <- I[as.integer(target_id)] / Total[as.integer(target_id)]

  transmission_rate <- user(0.05)
  recovery_rate <- user(0.01)
  S0[] <- user()
  I0[] <- user()
  foi_mat[,] <- user()
  initial(S[]) <- S0[i]
  initial(I[]) <- I0[i]
  initial(R[]) <- Total[i] - S0[i] - I0[i]
  dim(S0) <- user()
  dim(S) <- N
  dim(I) <- N
  dim(R) <- N
  dim(I0) <- N
  dim(foi_mat) <- c(N, N)
  dim(foi) <- c(N, N)
  dim(Total) <- N
  dim(delta_transmission) <- N
  dim(delta_recovery) <- N
  N <- length(S0)
},
verbose = TRUE, validate = TRUE, target = "c", pretty = TRUE,
skip_cache = FALSE) ->
  model_generator

model <-
  model_generator$new(S0 = site_S,
                      I0 = site_I,
                      foi_mat = foi_matrix,
                      source_id = as.integer(source_site_id),
                      target_id = as.integer(target_site_id))
model$set_user(transmission_rate = 0.05, recovery_rate = 0.01)

Benchmarking:

bench::mark(
  odin_c = model$run(0:100),
  deSolve_r = {
    
    site_R <- site_S
    site_R[] <- 0
    deSolve::ode(
      y = c(S = site_S, I = site_I, R = site_R),
      times = 0:100,
      func = function(time, state, parms) {
        with(parms, {
          S <- state[1:N]
          I <- state[(N + 1):(2 * N)]
          R <- state[(2 * N + 1):(3 * N)]
          
          Total <- S + I + R
          
          between_sites <- transmission_rate * S * (foi_matrix %*% I)
          
          
          source_prevalence <- I[[source_id]] / Total[[source_id]]
          target_prevalence <- I[[target_id]] / Total[[target_id]]
          
          list(c(
            dS = -transmission_rate * S * I - between_sites,
            dI = +transmission_rate * S * I + between_sites - recovery_rate * I,
            dR = recovery_rate * I
          ),
          source_prevalence = source_prevalence,
          target_prevalence = target_prevalence)
        })
      },
      parms = list(
        transmission_rate = 0.05,
        recovery_rate = 0.01,
        source_id = as.integer(source_site_id),
        target_id = as.integer(target_site_id),
        N = length(site_S)
      )
    )
  },
  check = FALSE
) %>% 
  print()

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions