diff --git a/docs/source/en/model_doc/gpt2.md b/docs/source/en/model_doc/gpt2.md
index 89a0429cca41..6ce006c9081d 100644
--- a/docs/source/en/model_doc/gpt2.md
+++ b/docs/source/en/model_doc/gpt2.md
@@ -14,197 +14,97 @@ rendered properly in your Markdown viewer.
-->
-# OpenAI GPT2
-
-
-
-
-
-
-
-
+
-## Overview
-OpenAI GPT-2 model was proposed in [Language Models are Unsupervised Multitask Learners](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) by Alec
-Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever from [OpenAI](https://huggingface.co/openai). It's a causal (unidirectional)
-transformer pretrained using language modeling on a very large corpus of ~40 GB of text data.
+# GPT-2
-The abstract from the paper is the following:
+[GPT-2](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) is a scaled up version of GPT, a causal transformer language model, with 10x more parameters and training data. The model was pretrained on a 40GB dataset to predict the next word in a sequence based on all the previous words. This approach enabled the model to perform many downstream tasks in a zero-shot setting.
-*GPT-2 is a large transformer-based language model with 1.5 billion parameters, trained on a dataset[1] of 8 million
-web pages. GPT-2 is trained with a simple objective: predict the next word, given all of the previous words within some
-text. The diversity of the dataset causes this simple goal to contain naturally occurring demonstrations of many tasks
-across diverse domains. GPT-2 is a direct scale-up of GPT, with more than 10X the parameters and trained on more than
-10X the amount of data.*
+The model architecture uses a unidirectional (causal) attention mechanism where each token can only attend to previous tokens, making it particularly effective for text generation tasks.
-[Write With Transformer](https://transformer.huggingface.co/doc/gpt2-large) is a webapp created and hosted by
-Hugging Face showcasing the generative capabilities of several models. GPT-2 is one of them and is available in five
-different sizes: small, medium, large, xl and a distilled version of the small checkpoint: *distilgpt-2*.
+You can find all the original GPT-2 checkpoints under the [OpenAI community](https://huggingface.co/openai-community?search_models=gpt) organization.
-This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://openai.com/blog/better-language-models/).
+> [!TIP]
+> Click on the GPT-2 models in the right sidebar for more examples of how to apply GPT-2 to different language tasks.
-## Usage tips
+The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`], and from the command line.
-- GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
- the left.
-- GPT-2 was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next
- token in a sequence. Leveraging this feature allows GPT-2 to generate syntactically coherent text as it can be
- observed in the *run_generation.py* example script.
-- The model can take the *past_key_values* (for PyTorch) or *past* (for TF) as input, which is the previously computed
- key/value attention pairs. Using this (*past_key_values* or *past*) value prevents the model from re-computing
- pre-computed values in the context of text generation. For PyTorch, see *past_key_values* argument of the
- [`GPT2Model.forward`] method, or for TF the *past* argument of the
- [`TFGPT2Model.call`] method for more information on its usage.
-- Enabling the *scale_attn_by_inverse_layer_idx* and *reorder_and_upcast_attn* flags will apply the training stability
- improvements from [Mistral](https://github.com/stanford-crfm/mistral/) (for PyTorch only).
+
+
-## Usage example
+```py
+import torch
+from transformers import pipeline
-The `generate()` method can be used to generate text using GPT2 model.
-
-```python
->>> from transformers import AutoModelForCausalLM, AutoTokenizer
-
->>> model = AutoModelForCausalLM.from_pretrained("gpt2")
->>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
-
->>> prompt = "GPT2 is a model developed by OpenAI."
-
->>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids
-
->>> gen_tokens = model.generate(
-... input_ids,
-... do_sample=True,
-... temperature=0.9,
-... max_length=100,
-... )
->>> gen_text = tokenizer.batch_decode(gen_tokens)[0]
+pipeline = pipeline(task="text-generation", model="openai-community/gpt2", torch_dtype=torch.float16, device=0)
+pipeline("Hello, I'm a language model")
```
+
+
-## Using Flash Attention 2
+```py
+import torch
+from transformers import AutoModelForCausalLM, AutoTokenizer
-Flash Attention 2 is a faster, optimized version of the attention scores computation which relies on `cuda` kernels.
+model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
+tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
-### Installation
+input_ids = tokenzier("Hello, I'm a language model". return_tensors="pt").to("cuda")
-First, check whether your hardware is compatible with Flash Attention 2. The latest list of compatible hardware can be found in the [official documentation](https://github.com/Dao-AILab/flash-attention#installation-and-features). If your hardware is not compatible with Flash Attention 2, you can still benefit from attention kernel optimisations through Better Transformer support covered [above](https://huggingface.co/docs/transformers/main/en/model_doc/bark#using-better-transformer).
+output = model.generate(**input_ids, cache_implementation="static")
+print(tokenizer.decode(output[0], skip_special_tokens=True))
+```
-Next, [install](https://github.com/Dao-AILab/flash-attention#installation-and-features) the latest version of Flash Attention 2:
+
+
```bash
-pip install -U flash-attn --no-build-isolation
+echo -e "Hello, I'm a language model" | transformers-cli run --task text-generation --model openai-community/gpt2 --device 0
```
-### Usage
+
+
-To load a model using Flash Attention 2, we can pass the argument `attn_implementation="flash_attention_2"` to [`.from_pretrained`](https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.PreTrainedModel.from_pretrained). We'll also load the model in half-precision (e.g. `torch.float16`), since it results in almost no degradation to audio quality but significantly lower memory usage and faster inference:
+Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
-```python
->>> import torch
->>> from transformers import AutoModelForCausalLM, AutoTokenizer
->>> device = "cuda" # the device to load the model onto
+The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
->>> model = AutoModelForCausalLM.from_pretrained("gpt2", torch_dtype=torch.float16, attn_implementation="flash_attention_2")
->>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
+```py
+import torch
+from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
->>> prompt = "def hello_world():"
+quantization_config = BitsAndBytesConfig(
+ load_in_4bit=True,
+ bnb_4bit_quant_type="nf4",
+ bnb_4bit_compute_dtype="float16",
+ bnb_4bit_use_double_quant=True
+)
->>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
->>> model.to(device)
+model = AutoModelForCausalLM.from_pretrained(
+ "openai-community/gpt2-xl",
+ quantization_config=quantization_config,
+ device_map="auto"
+)
->>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
->>> tokenizer.batch_decode(generated_ids)[0]
+tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2-xl")
+inputs = tokenizer("Once upon a time, there was a magical forest", return_tensors="pt").to("cuda")
+outputs = model.generate(**inputs, max_new_tokens=100)
+print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
+## Notes
-### Expected speedups
-
-Below is an expected speedup diagram that compares pure inference time between the native implementation in transformers using `gpt2` checkpoint and the Flash Attention 2 version of the model using a sequence length of 512.
-
-
-

-
-
-
-## Using Scaled Dot Product Attention (SDPA)
-PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
-encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
-[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
-or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
-page for more information.
-
-SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
-`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
-
-```python
-from transformers import AutoModelForCausalLM
-model = AutoModelForCausalLM.from_pretrained("gpt2", torch_dtype=torch.float16, attn_implementation="sdpa")
-...
-```
-
-For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
-
-On a local benchmark (rtx3080ti-16GB, PyTorch 2.2.1, OS Ubuntu 22.04) using `float16` with
-[gpt2-large](https://huggingface.co/openai-community/gpt2-large), we saw the
-following speedups during training and inference.
-
-### Training
-| Batch size | Seq len | Time per batch (Eager - s) | Time per batch (SDPA - s) | Speedup (%) | Eager peak mem (MB) | SDPA peak mem (MB) | Mem saving (%) |
-|-----------:|--------:|----------------------------:|--------------------------:|------------:|--------------------:|-------------------:|------------------:|
-| 1 | 128 | 0.039 | 0.032 | 23.042 | 3482.32 | 3494.62 | -0.352 |
-| 1 | 256 | 0.073 | 0.059 | 25.15 | 3546.66 | 3552.6 | -0.167 |
-| 1 | 512 | 0.155 | 0.118 | 30.96 | 4230.1 | 3665.59 | 15.4 |
-| 1 | 1024 | 0.316 | 0.209 | 50.839 | 8682.26 | 4881.09 | 77.875 |
-| 2 | 128 | 0.07 | 0.06 | 15.324 | 3557.8 | 3545.91 | 0.335 |
-| 2 | 256 | 0.143 | 0.122 | 16.53 | 3901.5 | 3657.68 | 6.666 |
-| 2 | 512 | 0.267 | 0.213 | 25.626 | 7062.21 | 4876.47 | 44.822 |
-| 2 | 1024 | OOM | 0.404 | / | OOM | 8096.35 | SDPA does not OOM |
-| 4 | 128 | 0.134 | 0.128 | 4.412 | 3675.79 | 3648.72 | 0.742 |
-| 4 | 256 | 0.243 | 0.217 | 12.292 | 6129.76 | 4871.12 | 25.839 |
-| 4 | 512 | 0.494 | 0.406 | 21.687 | 12466.6 | 8102.64 | 53.858 |
-| 4 | 1024 | OOM | 0.795 | / | OOM | 14568.2 | SDPA does not OOM |
-
-### Inference
-| Batch size | Seq len | Per token latency Eager (ms) | Per token latency SDPA (ms) | Speedup (%) | Mem Eager (MB) | Mem SDPA (MB) | Mem saved (%) |
-|-----------:|--------:|-----------------------------:|----------------------------:|------------:|---------------:|--------------:|--------------:|
-| 1 | 128 | 7.991 | 6.968 | 14.681 | 1685.2 | 1701.32 | -0.947 |
-| 1 | 256 | 8.462 | 7.199 | 17.536 | 1745.49 | 1770.78 | -1.428 |
-| 1 | 512 | 8.68 | 7.853 | 10.529 | 1907.69 | 1921.29 | -0.708 |
-| 1 | 768 | 9.101 | 8.365 | 8.791 | 2032.93 | 2068.12 | -1.701 |
-| 2 | 128 | 9.169 | 9.001 | 1.861 | 1803.84 | 1811.4 | -0.418 |
-| 2 | 256 | 9.907 | 9.78 | 1.294 | 1907.72 | 1921.44 | -0.714 |
-| 2 | 512 | 11.519 | 11.644 | -1.071 | 2176.86 | 2197.75 | -0.951 |
-| 2 | 768 | 13.022 | 13.407 | -2.873 | 2464.3 | 2491.06 | -1.074 |
-| 4 | 128 | 10.097 | 9.831 | 2.709 | 1942.25 | 1985.13 | -2.16 |
-| 4 | 256 | 11.599 | 11.398 | 1.764 | 2177.28 | 2197.86 | -0.937 |
-| 4 | 512 | 14.653 | 14.45 | 1.411 | 2753.16 | 2772.57 | -0.7 |
-| 4 | 768 | 17.846 | 17.617 | 1.299 | 3327.04 | 3343.97 | -0.506 |
-
-
-
-
-## Resources
-
-A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with GPT2. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
-
-
-
-- A blog on how to [Finetune a non-English GPT-2 Model with Hugging Face](https://www.philschmid.de/fine-tune-a-non-english-gpt-2-model-with-huggingface).
-- A blog on [How to generate text: using different decoding methods for language generation with Transformers](https://huggingface.co/blog/how-to-generate) with GPT-2.
-- A blog on [Training CodeParrot 🦜 from Scratch](https://huggingface.co/blog/codeparrot), a large GPT-2 model.
-- A blog on [Faster Text Generation with TensorFlow and XLA](https://huggingface.co/blog/tf-xla-generate) with GPT-2.
-- A blog on [How to train a Language Model with Megatron-LM](https://huggingface.co/blog/megatron-training) with a GPT-2 model.
-- A notebook on how to [finetune GPT2 to generate lyrics in the style of your favorite artist](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb). 🌎
-- A notebook on how to [finetune GPT2 to generate tweets in the style of your favorite Twitter user](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb). 🌎
-- [Causal language modeling](https://huggingface.co/course/en/chapter7/6?fw=pt#training-a-causal-language-model-from-scratch) chapter of the 🤗 Hugging Face Course.
-- [`GPT2LMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#gpt-2gpt-and-causal-language-modeling), [text generation example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation), and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
-- [`TFGPT2LMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_clmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
-- [`FlaxGPT2LMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#causal-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/causal_language_modeling_flax.ipynb).
-- [Text classification task guide](../tasks/sequence_classification)
-- [Token classification task guide](../tasks/token_classification)
-- [Causal language modeling task guide](../tasks/language_modeling)
+- Pad inputs on the right because GPT-2 uses absolute position embeddings.
+- GPT-2 can reuse previously computed key-value attention pairs. Access this feature with the [past_key_values](https://huggingface.co/docs/transformers//en/model_doc/gpt2#transformers.GPT2Model.forward.past_key_values) parameter in [`GPT2Model.forward`].
+- Enable the [scale_attn_by_inverse_layer_idx](https://huggingface.co/docs/transformers/en/model_doc/gpt2#transformers.GPT2Config.scale_attn_by_inverse_layer_idx) and [reorder_and_upcast_attn](https://huggingface.co/docs/transformers/en/model_doc/gpt2#transformers.GPT2Config.reorder_and_upcast_attn) parameters to apply the training stability improvements from [Mistral](./mistral).
## GPT2Config