diff --git a/gpytorch/likelihoods/bernoulli_likelihood.py b/gpytorch/likelihoods/bernoulli_likelihood.py index 614dc6546..62b9466fb 100644 --- a/gpytorch/likelihoods/bernoulli_likelihood.py +++ b/gpytorch/likelihoods/bernoulli_likelihood.py @@ -47,7 +47,7 @@ def log_marginal( return marginal.log_prob(observations) def marginal(self, function_dist: MultivariateNormal, *args: Any, **kwargs: Any) -> Bernoulli: - """ + r""" :return: Analytic marginal :math:`p(\mathbf y)`. """ mean = function_dist.mean diff --git a/gpytorch/likelihoods/gaussian_likelihood.py b/gpytorch/likelihoods/gaussian_likelihood.py index 5870a4e64..42cd715e1 100644 --- a/gpytorch/likelihoods/gaussian_likelihood.py +++ b/gpytorch/likelihoods/gaussian_likelihood.py @@ -130,7 +130,7 @@ def raw_noise(self, value: Tensor) -> None: self.noise_covar.initialize(raw_noise=value) def marginal(self, function_dist: MultivariateNormal, *args: Any, **kwargs: Any) -> MultivariateNormal: - """ + r""" :return: Analytic marginal :math:`p(\mathbf y)`. """ return super().marginal(function_dist, *args, **kwargs) @@ -186,7 +186,7 @@ def log_marginal( return res * ~missing_idx def marginal(self, function_dist: MultivariateNormal, *args: Any, **kwargs: Any) -> MultivariateNormal: - """ + r""" :return: Analytic marginal :math:`p(\mathbf y)`. """ return super().marginal(function_dist, *args, **kwargs) @@ -306,14 +306,14 @@ def _shaped_noise_covar(self, base_shape: torch.Size, *params: Any, **kwargs: An return res def marginal(self, function_dist: MultivariateNormal, *args: Any, **kwargs: Any) -> MultivariateNormal: - """ + r""" :return: Analytic marginal :math:`p(\mathbf y)`. """ return super().marginal(function_dist, *args, **kwargs) class DirichletClassificationLikelihood(FixedNoiseGaussianLikelihood): - """ + r""" A classification likelihood that treats the labels as regression targets with fixed heteroscedastic noise. From Milios et al, NeurIPS, 2018 [https://arxiv.org/abs/1805.10915]. @@ -408,7 +408,7 @@ def get_fantasy_likelihood(self, **kwargs: Any) -> "DirichletClassificationLikel return fantasy_liklihood def marginal(self, function_dist: MultivariateNormal, *args: Any, **kwargs: Any) -> MultivariateNormal: - """ + r""" :return: Analytic marginal :math:`p(\mathbf y)`. """ return super().marginal(function_dist, *args, **kwargs) diff --git a/gpytorch/likelihoods/multitask_gaussian_likelihood.py b/gpytorch/likelihoods/multitask_gaussian_likelihood.py index 6864ab801..06f6e06c7 100644 --- a/gpytorch/likelihoods/multitask_gaussian_likelihood.py +++ b/gpytorch/likelihoods/multitask_gaussian_likelihood.py @@ -293,7 +293,7 @@ def _eval_covar_matrix(self) -> Tensor: def marginal( self, function_dist: MultitaskMultivariateNormal, *args: Any, **kwargs: Any ) -> MultitaskMultivariateNormal: - """ + r""" :return: Analytic marginal :math:`p(\mathbf y)`. """ return super().marginal(function_dist, *args, **kwargs)