

Degree project

Visualization in Genealogical

Data
Genealogical tree application for Facebook

Author: Jesus Miguel de la Fuente

Date: 2011-09-02

Subject: Information Visualization

Level: Bachelor

Course code: 2DV00E

i

Acknowledgements

I want to thank and acknowledge all the people who have help me with this thesis in the
different ways they could help me.

 Andreas Kerren, because he accepted me to develop this project.

 Ilir Jusufi, to be my guide and spend his time with me helping and guiding with this

project

 My family, specially my parents to support me whenever I needed and helping me

from Spain and doing my life in Sweden easier.

 My friend family in Sweden. They always have been so nice with me, and thanks to

them for the amazing dinners and wonderful company.

 My friends of Erasmus. Without them was impossible to have a wonderful year,

great experience and nice university work.

 My friends of Spain, because they always are next to me, in the best times and the

worst times.

ii

Abstract

Information visualization is becoming more and more popular due to the development of the

Internet and the rapid increase of data. Since human eyes receive visual information very

quick and easy, the visualization can make complex and large data more understandable.

In this thesis is developed an application (ex. Facebook Application) that will allow
users to build and share visualization of genealogical data. Additionally it should visualize
time-dependant data, such as various events like marriage, etc. Since genealogical data are
basically trees, it would be easy to adapt our application to fit the needs for other cases, such as
company organizational structures charts that need to visualize different time dependant data.

This report describes the requirements for the project and the resulting implementation.

Keywords: Visualization, Visual representations, Genealogical Tree,

Hierarchical structures.

iii

CONTENT

1 INTRODUCTION
1.1 Problem and Motivation 1
1.2 Goals and Criteria 2
1.3 Report Structure 2

2 RELATED WORK
2.1 History 3
2.2 Related Visualization Work 4
2.3 Representation of Genealogies 8
2.4 New Visualization Techniques 11

3 VISUALIZATION AND INTERACTION
3.1 User Interface 23

3.1.1 Overview 23
3.1.2 Event Panel 24
3.1.3 Tree Panel: One panel, two visualizations 25
3.1.4 Window Person: Add, edit and show 27
3.1.5 Window Login Facebook 28

3.2 Interaction 29

4 REQUIREMENTS, ANALYSIS AND OVERALL DESIGN
 4.1 Requirements 34

4.2 Non-Functional Requirements 34
4.3 Functional Requirements 35
4.4 Use Cases 36

5 IMPLEMENTATION
5.1 Issues 38

5.1.1 XML 38
5.1.2 Servlets 38

5.2 Prefuse 39
5.2.1 Structures in Prefuse 39
5.2.2 Visualizations in Prefuse 41
5.2.3 Connecting with Facebook 43
5.2.4 Summary 46

6 CONCLUSIONS
6.1 Conclusion 47
6.2 Experience 47
6.3 Future Work 48

APPENDIX
A.1 Tools, languages and libraries 49
A.2 Class Description 50

A.2.1 Class Description of Visualizations 50
A.2.2 Class Description of Data Information 55

REFERENCES 60

iv

Table list

 Table 4.1 Non Functional Requirements 34
 Table 4.2 Functional Requirements 35
 Table 4.3 Use Case 1 36
 Table 4.4 Use Case 2 36
 Table 4.5 Use Case 3 37
 Table A.1 Tools, Languages and libraries 49
 Table A.2 Class Description TreeGen 50
 Table A.3 Class Description Vista 51
 Table A.4 Class Description Edit 51
 Table A.5 Class Description VentanaDos 51
 Table A.6 Class Description Congress 52
 Table A.7 Class Description Display 53
 Table A.8 Class Description Visualization 54
 Table A.9 Class Description Person 55
 Table A.10 Class Description TreeMLReader 56
 Table A.11 Class Description TreeMLWriter 56
 Table A.12 Class Description TableReader 57
 Table A.13 Class Description DelimitedTextTableReader 58
 Table A.14 Class Description TableWriter 59
 Table A.15 Class Description DelimitedTextTableWriter 60

Figure list

Fig 1.1 Number of applications on Facebook 1
Fig 2.1 Tree of a company 4
Fig 2.3 Tree of kind of beers 4
Fig 2.4 Classical Hierarchical Tree View 5
Fig 2.5 The H-Tree Layout 6
Fig 2.6 The Radial View 6
Fig 2.7 The Balloon View 7
Fig 2.8 Hyperbolic Browser 7
Fig 2.9 Tree Maps 8
Fig 2.10 GedCom File 9
Fig 2.11 Ore Graph 10
Fig 2.12 P-Graph 10
Fig 2.13 Bipartite p-Graph 11
Fig 2.14 Tree graphically of a demo 12
Fig 2.15 Example of Flare 13
Fig 2.16 Tree with oldest generation at the top 13
Fig 2.17 Tree with newest generations at the top 14
Fig 2.18 Comparing node-link diagram 17
Fig 2.19 A node-link depiction of a small layered graph 19
Fig 2.20 Quilts Visualization 19
Fig 2.21 TimeNets Visualization 20
Fig 2.22 Example of PhpGedView 21
Fig 2.23 Example of myHeritage.com 21
Fig 2.24 Example of Gramps Genealogy Tree 22
Fig 3.1 Application running with separated parts of the program 23

v

Fig 3.2 Original panel of events 24
Fig 3.3 Current panel of events (running the application) 24
Fig 3.4 Original Tree 25
Fig 3.5 Genealogical Tree 26
Fig 3.6 Ancestor Tree Visualization 26
Fig 3.7 Add a child or the first node 27
Fig 3.8 Add a spouse 27
Fig 3.9 Show Information 28
Fig 3.10 Coloring Code 29
Fig 3.11 Searching Event 30
Fig 3.12 Searching People 30
Fig 3.13 Event highlighted 31
Fig 3.14 List of people 31
Fig 3.15 Range Slider 32
Fig 3.16 Filter Level 32
Fig 3.17 Unknown Spouse 33
Fig 4.1 Schema about changing color of node 36
Fig 4.2 The schema how works event panel 37
Fig 4.3 Schema how is working to change the picture 38
Fig 5.1 DocuBurst 42
Fig 5.2 GraphView 42
Fig 5.3 FishEye 43
Fig 5.4 Congress 43
Fig 5.5 Window: name of Application from Facebook 44
Fig 5.6 Data about the application (the keys, id, name, CallbackURL…) 44
Fig 5.7 Window: Submit your application to Facebook 45
Fig A.1 Schema of class TreeGen 51
Fig A.2 Schema of class Congress 52
Fig A.3 Schema of class Display 54
Fig A.4 Schema of Visualization 55
Fig A.5 Schema of Person 56
Fig A.6 Schema of TableReader 57
Fig A.7 Schema of DelimitedTextTableReader 58
Fig A.8 Schema of TableWriter 59

vi

1

1 INTRODUCTION

Facebook is a social networking tool which it is becoming very important. Nowadays,

there are more than 400 million of members all over the world. Consequently, that is a

good reason to make an application in order to visualize genealogical data. Currently, the

number of applications now in Facebook is more than 500.000. [1]

Fig 1.1 Number of applications on Facebook taken from [2]

1.1 Problem and Motivation
Genealogical data can be shown in different ways, such as ancestor charts, family trees or
family relation with your friends in a social networking website, like Facebook. In family
trees, the oldest generations usually appear at the top and the youngest ones at the bottom. On
the contrary, the youngest generations are placed at the top in ancestor charts, which
usually resemble more a real tree.

With the expansion of different social networking websites such as Facebook, a lot of
family members are getting "reconnected" on a virtual level. We could use the data provided
by these websites and their users to build up and visualize genealogical data. The interest in
data visualization is always important for companies, which have strong hierarchies of their
employees. Furthermore, this topic has given me the opportunity to investigate and develop an
application like that, has been really challenging and motivating.

However, one of the main problems is that all the families are not perfect. For instance,
there are some divorces, new weddings. Then, how can we represent this? We must review
the structure of the tree to represent these events and new relationships among their members.

2

1.2 Goals and Criteria

This section describes the goals pursued by this thesis in order to solve the problem and

the criteria used for reach the goal:

 The first and most important aim is to solve the problem to represent the

genealogical tree. In order to get that, the interface must have look and feel. In

addition, it must be easy to be used.

 The second goal is to show the events of people in the tree. For example, weddings,

divorces, deaths...

 The third goal is to be able to add, edit and show people’s information in the

tree. In addition, th i s appl i ca t ion must try to connect with Facebook in

o rder to take the information from this social network.

 The last goal is to have the possibility to open the stored information of the

genealogical tree and to save the data from the current data tree.

The development of this application could be divided into four parts. The first one is

based on searching and choosing the platform to build up the application. There are

different and interesting languages and platforms to start to work. Nevertheless, it is

important to choose a good platform. Among all of them, we should work with the one that

it is easy to implement, easy to be visualized by the user and compatible with different

operating systems or browsers.

The second and main part of the project consists of the implementation of

genealogical data in the family tree with a nice visualization. Then, the user must understand it

easily. If i t is possible, i t wou ld be grea t t o connect with a social network like

Facebook to take the information.

In the following part, a panel showing the events of all the people must be

implemented. Of course, the information of this panel must be taken from the tree.

The last part is important for the application, which must be able to save and open the

trees with their people and all the people’s data.

In conclusion, an application that will build up a genealogical tree must show the data in

a nice visualization. It should also give the option to save the current tree or open stored

one. Finally, a left panel should show the event data related to the family members.

1.3 Report Structure

The present project comprises mainly six points. In the current one, the introduction is

being carried out.

In the second Chapter, I will try to explain the studies and steps which had been done

before I started with the implementation of the system.

Thirdly, different points of view to implement the system and to represent the data in

visualization will be shown.

In Chapter four the explanation of the requirements of the application will be

mentioned. After that, there will be an explanation of the way how the different parts of

the application have been built. These parts refer to: the main panel where the tree is

represented, the left panel with the representation of the events dynamically, the way to

store and use the data of the tree, the way to show the information of each person in the

application and how the system connects with a social network in order to get people’s

information.

The implementation details are introduced in Chapter five. Finally, the conclusion of

the thesis and some future works are listed in Chapter six.

3

2 RELATED WORK

In this chapter, I am going to explain the different related work of data and the

genealogy visualization which I based to start the project on. Moreover, some examples

about the ways to visualize the data and other works of genealogy data will be given.

2.1 History

American genealogy traditionally dates from 1771, when Luke Stebbins published an

account of his New England family.3 America was on the verge of a Revolution that

would upend politics and undercut the respect for ancestors that had strengthened every

society since Biblical days. Postwar, ancestral matters became not just politically incorrect

but suspect. To many, genealogy smacked of elitism. In 1783 former Continental Army

officers sparked a national controversy by organizing a society with hereditary rights, the

Society of the Cincinnati— prompting fears that it would breed a new ruling dynasty.

Amid social and political paranoia of the Early Republic, even Americans like George

Washington understood the wisdom of camouflaging their own curiosity about their

ancestral past.

Post–Civil War America was consumed by the ideology of race in its broadest sense.

Hereditary organizations sprang up everywhere for those who could prove descent from

this group or that. Once peace and prosperity returned, the nation attracted unprecedented

waves of immigrants (particularly Catholics from Eastern and Southern Europe) and

nativism spread like a pox. Many ―old American families‖ of Protestant, Northern

European stock reacted with hostility toward peoples who had not created America but

who were arriving on its shores expecting to share in its greatness.

Genealogy became a tool of ideologies and prejudices rooted in concepts of blood,

heredity, race, and stock. Genealogical organizations, including NGS, echoed those ideas.

The first issue of the NGS Quarterly praised the (Northern European) ―Blood that Made

the Sturdy Races of New Netherland.‖ [30] That same year, the society’s head, a

physician, focused his presidential address on ―The Problems That Now Confront Us‖—

specifically, the ―degeneracy and decay of modern society‖ and the ―negative‖ influence

of immigrants. He argued that solutions to these ―problems‖ lay in wise reproductive

choices made possible by the new ―sciences‖ of genealogy and eugenics. Similar

comments appeared in other genealogical journals.

The eugenics to which he referred was a new pseudo-science embraced by most

western nations. Founded by Charles Darwin’s cousin Sir Francis Galton, eugenics

defined itself as the ―science‖ of improving the human race by controlling reproduction.

Naturally, the movement fed on genealogy; Galton even offered prizes for the biggest

compilations of family data. Some within the new academic history held comparable

views. However, that profession’s insistence upon objectivity constrained their influence,

while genealogy remained a foil for pride based upon genetic heritage––a pride valued

more than objectivity or truth.

Adolph Hitler’s atrocities committed in the name of race and blood discredited

eugenics, but ancestral study continued to be equated with personal edification and

amusement rather than serious study. The American Antiquarian Society’s annual reports

show how far historians and research facilities went to distance themselves from

genealogy during the mid-twentieth century. Founded in 1812, the society had been the

first American library to place priority on family history.

For more than a century its mission was unchanged. By 1953, it boasted one of the

4

nation’s top three collections of genealogies—but added that the society did not encourage

―genealogical investigation‖ when a researcher was interested only in his own family

ancestry, although it realizes that such research is of much entertainment.

The 1960 annual report showed even more disdain: ―For many years we took all

genealogical serials but we dropped many of them as potboilers of no utility to the

historians.‖[31, 32]

2.2 Related Visualization Work

Trees are used to visualize and model different hierarchical data sets. There are various

cases where tree visualization are used to represent these hierarchies. For instance,

visualizing a company organizational tree to show the positions of the employees in a

company or the hierarchies of car companies. Another example is visualization of a tree for

different kind of beers. We can see these examples in the figures 2.1 and 2.2

Fig 2.1 Tree of a company taken from [14]

Fig 2.2 Tree of car companies taken from [15]

5

Fig 2.3 Tree of kind of beers taken from [16]

There are some kinds of trees to see the data. Depending on what we want to

represent or on the kind of information that we must visualize, we should choose one of the

following ones:

The Classical Hierarchical Tree View (Figure 2.4): Children are placed ―below‖

their common ancestor. One of the main disadvantages of this kind of tree is the unused

space. If the size of the tree is small, there is no problem, but when its size is big, it

is difficult to visualize the full tree because of the unused space.

Fig 2.4 Classical Hierarchical Tree View taken from [28]

6

 The H-Tree Layout (Figure 2.5): It is the classical drawing technique for

representing binary trees. In our project would be impossible to choose this type of tree

because the first person to appear would be the youngest one and the last one the eldest.

In addition, in this project we need to cover the possibility to start from the eldest ones to

the youngest ones.

Fig 2.5 The H‐Tree Layout taken from [28]

 The Radial View (Figure 2.6): The radial view is based on an algorithm described

in Eades [5]. Good be perfect for trees with a lot of children. Nevertheless, in case it has

too many levels, the problem of unused space could appear again.

Fig 2.6 The Radial View taken from [28]

7

 The Balloon View (Figure 2.7): The balloon view can also be obtained by projecting

a cone tree onto a plane. Once more, the trees with a big size will have the problem with

unused space.

Fig 2.7 the Balloon View taken from [28]

The Hyperbolic Browser (Figure 2.8): This layout technique builds trees in a

hyperbolic plane and then maps which are structured in ordinary Euclidean plane. As I

have mentioned above, there might be a problem with the unused space if the size of the

tree is too big.

Fig 2.8 Hyperbolic Browser taken from [28]

8

The Tree Map (Figure 2.9): Tree maps display hierarchical (tree-structured) data as

a set of nested rectangles. Each branch of the tree is given a rectangle, which is then tiled

with smaller rectangles representing sub-branches. A leaf node's rectangle has an area

proportional to a specified dimension on the data. (In the illustration, this is proportional

to a waiting time). Often the leaf nodes are colored to show a separate dimension of the

data.

When the color and size dimensions are correlated in some way with the tree structure,

one can often easily see patterns that would be difficult to spot in other ways. A second

advantage of tree maps is that, by construction, they make efficient use of space. As a

result, they can legibly display thousands of items on the screen simultaneously [29].

Fig 2.9 Tree Maps taken from [28]

2.3 Representation of Genealogies.

People collect genealogical data for several different reasons or purposes:

• To research on different cultures in history, sociology and anthropology (White et al.,

1999), where kinship is taken as a fundamental social relation.

• To make genealogies of families and/or territorial units,

– Mormons genealogy (MyFamily.com, 2004)

– Genealogy of American presidents (Tompsett, 1993)

• For special genealogies

– Students and their PHD thesis advisors:

• Theoretical Computer Science Genealogy (Johnson and Parberry, 1993)

– Gods (antique).

There are also many programs for genealogical data entry and maintenance

(GIM, Brother’s Keeper, Family Tree Maker...), but only few analyses can be done

using these programs.

GEDCOM is a standard one for storing genealogical data, which is used to exchange

and combine data from different programs, which have been used for entering the data.

The following lines are extracted from the GEDCOM file of European Royal families.

9

Fig 2.10 GedCom File taken from [33]

From data represented in the described way (Fig 2.10), we can generate several graphs

which are explained in the following paragraphs.

Genealogies can be represented as networks in different ways: as Ore-graph, as p-

graph, and as bipartite p-graph.

In an Ore graph of genealogy every person is represented by a vertex. One the one

hand marriages are represented with edges. On the other hand the relation between parent

and children are shown with arcs pointing from the parents to their children.

0 HEAD 0 @I115@ INDI

1 FILE ROYALS.GED
1 NAME William Arthur

Philip/Windsor/

... 1 TITL Prince

0 @I58@ INDI 1 SEX M

1 NAME Charles Philip

Arthur/Windsor/
1 BIRT

1 TITL Prince 2 DATE 21 JUN 1982

1 SEX M
2 PLAC St.Mary’s Hospital,

Paddington

1 BIRT 1 CHR

2 DATE 14 NOV 1948 2 DATE 4 AUG 1982

2 PLAC Buckingham Palace, London
2 PLAC Music Room, Buckingham

Palace

1 CHR 1 FAMC @F16@

2 DATE 15 DEC 1948 ...

2 PLAC Buckingham Palace, Music

Room
0 @I116@ INDI

1 FAMS @F16@ 1 NAME Henry Charles

Albert/Windsor/

1 FAMC @F14@ 1 TITL Prince

... 1 SEX M

... 1 BIRT

0 @I65@ INDI 2 DATE 15 SEP 1984

1 NAME Diana Frances /Spencer/
2 PLAC St.Mary’s Hosp.,

Paddington

1 TITL Lady 1 FAMC @F16@

1 SEX F ...

1 BIRT 0 @F16@ FAM

2 DATE 1 JUL 1961 1 HUSB @I58@

2 PLAC Park House, Sandringham 1 WIFE @I65@

1 CHR 1 CHIL @I115@

2 PLAC Sandringham, Church 1 CHIL @I116@

1 FAMS @F16@ 1 DIV N

1 FAMC @F78@ 1 MARR

... 2 DATE 29 JUL 1981

...

2 PLAC St.Paul’s Cathedral,

London

10

Fig 2.11 Ore Graph taken from [33]

In a P-graph vertices represent individuals or couples. In case that person is not

married, they are represented by a vertex; otherwise the person is represented with the

partner in a common vertex. There are only arcs in P-graphs – they point from children to

their parents (Figure 2.12). The solid arcs represent the relation with a son of and the

dotted arcs represent relation with a daughter of.

Fig 2.12 P-Graph taken from [33]

A Bipartite p-graph has two kinds of vertices – vertices representing couples

(rectangles) and vertices representing individuals (circles for women and triangles for

men) therefore each married person is involved in two kinds of vertices (or even more if

he/she is involved in multiple marriages). Arcs again point from children to their parents.

11

Fig 2.13 Bipartite p-Graph taken from [33]

P-graphs and bipartite p-graphs have many advantages:

• There are less vertices and lines in p-graphs than in corresponding Ore graphs;

• P-graphs are directed, acyclic networks;

• Every semi-cycle of the p-graph corresponds to a relinking marriage. There are two

types of relinking marriages:

– Blood marriage: e.g., marriage among brother and sister.

– Non-blood marriage: e.g., two brothers marry two sisters from another family.

• P-graphs are more suitable for analyses.

Furthermore, bipartite p-graphs have an additional advantage. It is the distinction

between a married uncle and a remarriage of a father. This property enables us, for

example, to find marriages between half-brothers and half-sisters. [33]

2.4 New Visualization Techniques

Genealogy, i.e., the study of family relationships, is an increasingly popular activity

pursued by millions of people, ranging from hobbyists to professional researchers. This is

reflected in the large number of commercial and free genealogical software packages

available nowadays. While most of these packages offer excellent support for building

and maintaining genealogical databases, their support for visualizing these databases is

quite weak.

The most widespread visualizations are based on node-link diagrams, which have been

shown too quickly. As a result, they become unreadable as the graph size grows.

In fact, the users want to see interesting information without much effort. Because of

that, it must be necessary to have an understandable and easy skin of visualization.

To start with a visualization tool about trees, I found the first one called Prefuse, a

library of Java (explained in chapter 5.2). This visualization uses a kind of classical

hierarchical view, which has been explained before. As example of it, we can see the next

picture:

12

Fig 2.14 Tree graphically of a demo taken from [7]

The representation of family trees is becoming increasingly important. There are some

current works and projects working on that. The need to show the information contained

in a genealogic structure is doing that, more related works are starting and

improving the oldest. Some examples of these works can be found out on internet.

The second important tool I found to work with trees is Flare. Flare is an ActionScript

library for creating visualizations that run in the Adobe Flash Player. From basic charts

and graphs to complex interactive graphics, the toolkit supports data management, visual

encoding, animation, and interaction techniques. Even better, Flare features a modular

design that lets developers create customized visualization techniques without having to

reinvent the wheel. Flare is open-source software released under a BSD license, meaning

it can be freely deployed and modified. Flare's design was adapted from its predecessor

Prefuse, a visualization toolkit for Java. [25]

http://flare.prefuse.org/license-flare.txt
http://flare.prefuse.org/license-flare.txt
http://prefuse.org/

13

Fig 2.15 Example of Flare taken from [25]

2.5 Genealogy Visualization

As I have already said in the first chapter there are different forms to represent a family

tree. On the one hand, the oldest generations could be placed at the top and the newest

ones at the bottom. On the other hand, newest generations could be placed at the top and

obviously, the oldest one at the bottom.

Fig 2.16 Tree with oldest generation at the top taken from [3]

14

Fig 2.17 Tree with newer generations at the top taken from [6]

Considering the genealogical databases explained in section 2.3, those which are

built by users individually can easily reach thousands of nodes. However, those which

are built by organizations, such as companies, can reach tens of thousands of nodes.

Thus, the need for a more scalable visualization solution is clear.

There is a solution based on a matrix representation, inspired by the Quilts [35]

visualization for layered graphs. Quilts eliminate the confusing link crossings of node-

link diagrams, and display layered graphs in a more compact manner than traditional

matrix representations. The GeneaQuilts [35] technique maps rows to individuals and

columns to nuclear families, effectively mapping groups of individuals from the same

generation to alternating graph layers. I show how this approach allows us to benefit

from all the advantages of the original Quilt technique while avoiding its drawbacks.

Different tasks are performed by genealogy researchers and enthusiasts. These

tasks involve data collecting and recording, source documentation and analysis, and

presentation. Although all these tasks are important, we focus on the initial analysis

phase, where genealogists attempt to explore their datasets and quickly create or

verify hypotheses.

We compiled a list of basic analysis tasks, collected from three extensive

interviews with 8 users involved in genealogy research: 3 historians investigating

transmission of land ownership and office titles across multiple families in France, 4

anthropologists interested in inter-marriage strategies within small populations/tribes

worldwide, and a semi-professional genealogist who investigates family ancestry of

individuals or families. We also included analysis tasks supported by commercial

genealogy tools and research prototypes. Although our system does not currently

support all the described tasks, their enumeration serves as a guide for genealogy

visualization systems and for identifying future extensions to our work.

Since a genealogical graph is a special kind of graph, we build our taxonomy on

the ―Task Taxonomy for Graph Visualization‖. The graph objects become

15

genealogical entities: individuals, nuclear families, and paths (e.g., ancestors or

descendants) in the genealogy graph or sub-graphs. The tasks are categorized as:

Topology-Based tasks where users need to identify global structures or patterns of

interest in their data or among specific entities:

- Identify one’s ancestors (pedigree) and/or descendants.

- Examine a nuclear family (identify parents, children).

- Identify one’s extended family (aunts, uncles, nephews, nieces, cousins).

- Examine the nature of family relationships between two or more people in a

genealogy. e.g., find if they are connected, if they have common ancestors,

find all paths linking two individuals, examine if they are consanguine (by

blood) or conjugal (by marriage) relatives, determine the nature of their

connection.

- Find cases of inter-marriages between family members (both consanguine

and conjugal relatives). These connections are often referred to as ―rings‖

within families and may result in pedigree collapse (cases where married

couples have common blood ancestors). The types of such inter-marriages

are also important (e.g., between parental uncles and nieces, between

maternal cousins, etc.) as well as their degree (how many generations are

included in the ring).

- Identify complex family events, such as divorce, serial monogamy and

polygamy, or marriages across generations (generation skipping or

merging).

- Identify the main individuals in the genealogy (e.g., founder of a dynasty or

of the largest lineage, or individual with largest number of children or

marriages).

Attribute-Based tasks that involve the exploration of relations and attributes outside

of blood and marriage connections:

- View detailed information on an entity’s attribute, e.g., an individual’s birth

date, their location or the wedding’s date.

- Organize important events for a family (e.g., births, deaths, marriages, etc.)

in chronological order. This requires dealing with ambiguous or missing

dates that is very common in genealogy data.

- Compare attributes of different individuals such as gender, status, etc. Of

special interest is how attributes propagate within a family (e.g., inheritance,

physical characteristics and genetic diseases) or across families. Commonly

found examples include the succession of the title of patriarch within a

family or the succession of a political office across families.

- Examine the evolution of numerical attributes across time and families. For

example investigate how the dowry amount has evolved within a family or

compare the division/distribution of inherited land between families across

generations.

- Explore relationships outside blood and marriage, such as trading partners

between families, foster children, family neighbors and friends, etc. For

professional genealogists these relationships can also be crucial links for

further research to expand their datasets.

16

For centuries, genealogical relationships have been illustrated in books with hand-

crafted charts of a few dozen individuals. Genealogy software can now technically

accommodate datasets of hundreds of thousands of individuals. Nevertheless, no

software can visualize a large dataset in a legible way. So far, three types of

approaches have been used for visualizing genealogies: node-based representations,

line based representations and tabular representations.

For each person in a genealogy there is one tree of descendants and one of

ancestors (pedigree). Most commercial software visualize these tree structures using

traditional tree diagrams, or offer alternatives such as Fan charts (radial space filling

diagrams) or hourglass charts (also called ―centrifugal views‖), drawing both

descendant and ancestor trees. Hourglass charts have many similarities to the

Zoomtree [35] interface. All of these visualizations break down quickly as the number

of individuals grows, and fail even sooner when they depict not just consanguine trees

(descendants and ancestors) but also the lattice formed by conjugal relationships

(marriages). Visualizing a genealogical graph using a node-link diagram – either from

an Ore-graph or from a bipartite graph – usually involves assigning a layer (i.e., a

generation) to each individual and trying to minimize the crossings between layers.

Large genealogies exhibit very long edges and too many crossings to be suitable

for exploration or presentation. Genealogy systems seldom implement these

algorithms and usually resort to unpublished heuristics to layout the graphs, all of

which break on special cases (e.g. cycles or multiple marriages on several

generations). To solve the problem, they rely on hand-editing the layout, which is

impractical for large genealogies.

Dual Trees [35], which are similar to Multi-Trees, extend the hourglass chart by

offsetting and connecting roots of ancestor and descendant trees, with each root

having an hourglass chart. This technique minimizes edge crossings but does not

eliminate them, and it still only shows a limited number of nodes on screen. To

address this, the authors have proposed interaction techniques for expanding or

collapsing nodes and transitioning between subsets of the dual trees. In short, all node-

based approaches have serious drawbacks: they do not scale well to large numbers of

individuals, they cannot represent large family lattices, they fail to highlight complex

relationships (such as polygamy), they do not show temporal attributes (like birth

dates) and finally they fail to convey larger context and distant relationships.

17

Fig 2.18 Comparing node-link diagram (left) and fan chart (right) when displaying eight (top) and eleven

generations (bottom) taken from [35]

Another approach to genealogy visualization represents individuals as lines rather

than nodes. For example we can present individuals as line segments and families as

points. Each segment has two points, one connecting the individual to their parents,

and the other to their children. But multiple marriages are difficult to depict: they

require duplicating the lines representing the person for each marriage. P-graphs use a

similar representation, with the person’s gender indicated by the line orientation

(vertical or tilted) and additional notes on the line segments indicate gender and

patriarchal succession. P-graphs are often used for genealogy charts in anthropological

literature, as the directions of the lines form interesting patterns when examining

intermarriages within a family or clan.

18

Finally, most Genealogy systems provide extensive ways to navigate in large

datasets by the means of tables: tables of individuals, tables of marriages, tables of

places, etc. However, tables alone are poor at showing an overview of the relations

between people and at supporting navigation and exploration. They need to be

coupled with clear and scalable visualizations.

Some genealogy systems provide analysis tools, especially for the purpose of

kinship analysis. Ethnographers study the strategies adopted by groups and build

models of stable societies based on different kinship systems. Therefore, they develop

tools to check their models in specific populations. The main characteristic of these

models is based on marriage patterns and ring structures. A ring structure is a cycle in

the non-oriented genealogy graph, closed by a marriage. For example, the Bible

genealogy shows that Mary and Joseph have a common ancestor: King David.

Therefore, there is a closed cycle starting at King David, splitting in two descendant

lines, one reaching Joseph, the other one reaching Mary and closing at their marriage.

Researchers have advocated matrix-based representations as a scalable alternative

to node-link representations. Recently, a variant called Quilts has been introduced.

That one can represent layered and ―quasi‖ layered graphs in a more compact way.

The Figure 2.19 illustrates the original Quilts visualization. The left image shows

a node-link diagram of a directed graph where nodes have been assigned a layer (a

row). Most edges run between successive layers.

The right image shows the corresponding quilt: nodes are laid out in a zigzagging

pattern across the matrix diagonal, as opposed to being on the matrix’s borders like in

classical matrix representations. The nodes from the top layer (in blue) are laid out

horizontally and the nodes from the second layer (in red) are laid out vertically. Links

between the two layers are depicted as black dots, forming a sub-matrix. To the right

of the second (red) layer are the sub-matrix depicting relationships between the second

and the third layer (in green).

Problems arise when there are links between two non-successive layers, i.e., skip

links. For example, it can be seen from the left image that two links go from the 1st to

the 4th layer, and one from the 2nd to the 4th layer. Since not all skipped links can be

displayed positionally (e.g. 2nd to 4th layer), Quilts appends skip-links to submatrices

and uses a color-coding scheme to refer to distant nodes. In the picture for example,

two colored dots have been added to the first (blue/red) submatrix to show links from

the 1st (blue) to the 4th (purple) layer.

Another colored dot has been added to the right to depict the link from the 2nd

(red) to the 4th (purple) layer. However, this solution is seriously limited, as it can be

difficult or impossible to find the matching color of the destination node, especially in

large graphs. [34]

19

Fig 2.19 A node-link depiction of a small layered graph (left) and its quilt depiction (right) taken from
[35]

Fig 2.20 Quilts Visualization taken from [35]

TimeNets[36] is another new visualization technique for genealogical data. Most

genealogical diagrams prioritize the display of generational relations. To enable

analysis of families over time, TimeNets prioritize temporal relationships in addition

to family structure. Individuals are represented using timelines that converge and

diverge to indicate marriage and divorce; directional edges connect parents and

children.

This representation both enables perception of temporal trends and provides a

substrate for communicating nonhierarchical patterns such as divorce, remarriage, and

plural marriage. We also apply degree-of-interest techniques to enable scalable,

interactive exploration.

By depicting individuals as timelines which converge and diverge to depict

marriage, TimeNets represent a number of real-world phenomena— including

divorce, remarriage, plural marriage, and out-ofwedlock births—that are either

difficult or impossible to represent using standard genealogical diagrams. By using

degree-of-interest techniques, TimeNets also support scalable, interactive exploration.

In a controlled experiment we found that TimeNets exhibited significant advantages

over family tree diagrams for tasks involving temporal data: TimeNets accelerated

task times 25% without diminishing accuracy. These results suggest that TimeNets

could serve as a useful tool for genealogical researchers and hobbyists. [36]

20

Fig 2.21 TimeNets Visualization taken from [36]

Some built applications I found on the browser to create specifically genealogical

trees is PhpGedView [23] built with the PHP language. PhpGedView is a

revolutionary genealogy program which allows you to view and edit your genealogy

on your website. PhpGedView has full editing abilities, full privacy functions, and

supports multimedia like photos and document images. PhpGedView also

simplifies the process of collaborating with others working on your family lines.

Your latest information is always on your website and available for others to see

[23]. Of course, there are some webpages following the same steps (built with

Php) to create genealogical trees.

21

Fig 2.22 Example of PhpGedView [23]

Very similar tool to create genealogical trees is Myheritage.com.

MyHeritage.com was founded by a group of people with a passion for genealogy

and a deep knowledge of Internet technology. It is not an open code, just create the

tree. [24]

Fig 2.23 Example of myHeritage.com [24]

22

Finally, we can find Gramps Genealogy System: is a free software project for

genealogy, offering a professional genealogy program, and a wiki open to all of them.

It is a community project, created, developed and governed by genealogists. [22]

Fig 2.24 Example of Gramps Genealogy Tree taken from [22]

23

3 VISUALIZATION AND INTERACTION

This chapter gives an overview about the user interface of our prototype. I will explain

the visualization and interaction about the main panel, the event panel and the windows to

add, edit or show people. In addition, I will explain how the system is working

among users and internally how the system saves the information which the user

introduces.

3.1 User Interface

This section contains the explanation of the two panels that we are using in the

system and the different views we have in the application, specially how they look like

and how they work.

3.1.1 Overview

We will see an overview about how the application comprises different parts, which

the user could find working with it. This will be explained more in detail in the

following subsections.

.

Fig 3.1 Application running with separated parts of the program

In the main window, which is the biggest one, we can find two different panels,

one on the left with some symbols and one on the right with the tree. These are the

event panel and the tree panel.

The other windows are for different activities. For example, to add a new person to

the tree, to edit the information of the selected person or to show the information of

this person.

Summarizing the process to build what the genealogical tree is, firstly the person

must be added to the tree then, the wife and the children can be added with the

24

different options from the menu. The event panel is updated automatically when a

person is added or modified. If the user wants to visualize the information of a

person, must select the person and then using again the menu or double clicking, a

new window will be opened with the information of that person.

Furthermore, the user can search some events by typing on the white box on the

left corner. Then, the program will filter the events.

3.1.2 Event Panel
One important part of the system is the event panel placed on the left of the

application. This panel depends directly on the other part of the system, the main

panel which will be explained in the subsection 3.1.3.

This panel will show the information of the events. These events are taken from

the data of the people. When a person is added or edited, the event panel is updated

with the new information about the data of the person.

Fig 3.2 Original panel of events

Fig 3.3 Current panel of events (running the application)

25

3.1.3 Tree Panel: One panel, two visualizations

This is the most important part of the system. The first thing I had to decide was the

way to show the tree. To develop the tree I choose the way of representation. That

is, the oldest generations are situated at the top and the newest generations at the

bottom. In that way, the structure of a tree is easier to represent the oldest at the top

and the newest at the bottom.

Nevertheless, the problem to represent the tree vertically is a problem of space. The

screens usually have a bigger width than height (example, a laptop screen). Because

of this, the tree will be shown from left to right (the oldest on the left and the

youngest on the right), but following the same steps to build a tree from top to

bottom.

In this panel the genealogical tree will be represented. This tree only will show the

name of the person because the system works faster doing this (and later showing the

information with an option). So, how can I distinguish the people? An

implementation is done at least to have a differentiation between men and women.

Why this? It is because the tree has an order to build the family. In addition, we can

differentiate between husband and wife. That is the reason of the rings next to the

women. Then rings only appear when the woman is the wife, to separate a female

who is wife and female who is only child.

How to build the family? We can suppose there will be some divorces or some

weddings ―repeated‖ (after the divorce, or because the wife is death). So, thinking

how to solve the problem to visualize this in the tree, the best idea I could find was

creating the father. In fact, the wife will be considered a ―child‖ of the father. After

this, the son or daughter will be created from the wife. In this way, we can visualize

easily who every child’s mother is in case the father has had more than one wife.

Fig 3.4 Original Tree

26

Fig 3.5 Genealogical Tree

The second visualization is based on the example of Prefuse DocuBurst. This

visualization is better to represent an Ancestor Tree (from youngest to oldest) as we

minimize the problem of unused space. This can be reduced because there is no space

(no edges between people).

Why is the tree not created with the other visualization? It is because the user will

find easily how ancestor is divided by father family on the one side and mother

family on the other side.

Moreover, the problem to represent the whole family is solved taking into account

that the other visualization is only possible following the male line of the family. In

this case, it is possible to follow both lines, male and female.

Fig 3.6 Ancestor Tree Visualization

27

3.1.4 Window Person: Add, edit and show.

The need to work with people in the tree forces us to create a part that is able to

manage all these people.

The tree has nodes. Each node would have some children and each child more

children. The question now is how I could add a person to a specific node or edit

the information of the node that the user wanted. The user must click on the user who

wants to change or add children and then choose the option in the options menu.

Then, depending on the option, one window will appear to manage the person. And

how is this working? We will see it in the following paragraphs.

Fig 3.7 Add a child or the first node

Fig 3.8 Add a spouse (default selected woman)

There are three options to add a person: add the first person of the tree, add a

wife or add children. The windows show the same but internally are not the same.

For example, when user adds a spouse, is allowed to add the wedding’s date.

The next window shows the information of the person with the possibility to

change the picture profile. I need this form because I do not draw in the tree

this information as the system could be unstable and slowly. The information is

28

taken from the table which performs the tree we see in the main panel. When the user

clicks on the person, the pointer goes directly to the row of the table where the person

is.

To change the picture, the user just only needs to click on the default picture and

choose the picture for the profile.

Fig 3.9 Show Information

3.1.5 Window Login Facebook
We do not have a servlet to do the connection between Facebook and our

application but I implemented the window to connect with Facebook. This window

just shows two fields: The username and the password. When the user clicks on

connect, the system connects with Facebook through the public and the secret key,

which will be explained below. Nonetheless, without a connection with the servlet,

the information of the contacts from Facebook is impossible to get.

29

3.2 Interaction
One of the most important parts of the application is the interaction between the user

and the tree. Remembering the topic of this thesis, the visualization becomes one of

the most interesting and important issues to explain in this report.

The first interaction is how people are represented with different colors. The user

can appreciate the different colors (green and pink) to have a first impression about

the genre of the members of the family. Also, the rings next to a woman represent

that is the spouse of the person next to her.

Fig 3.10 Coloring Code

After this, it is important to explain how the search is working. We can find two

search fields. The user can find specific events of the people or specific people in the

tree. As we can see in the Figure 3.11, in one case, a filter is applied to show the

searched items and in the second case a new node coloring is added to the view:

30

Fig 3.11 Searching Event

Fig 3.12 Searching People

The second interaction is between the event panel and tree panel. When the user

does a mouseover on an event, the person involved in that event is highlighted in the

tree like a search. The next picture shows an example of this:

31

Fig 3.13 Event highlighted

The option of list of people is the same case. A person is selected on the list and

this person is highlighted in the tree:

Fig 3.14 List of people

In the event panel we can find the Slider. The user can limit the range of the years

to be showed. Moving the slider the panel filters the results depending of the years

between the limits. In the last screenshots we can see ―30 events‖ on the top. Now,

after the filtering the number is ―24 events‖:

32

Fig 3.15 Range Slider

An interaction in the tree panel, depending on which kind of visualization that the

user is using, we could find different interactions. The common actions are for

example, to move the tree clicking outside the tree and moving the mouse, to zoom

with the wheel of the mouse or to resize the tree with the right button of the mouse.

As for the Ancestor visualization refers, we can find one important added feature.

The filter level allows users to show more or less levels of the tree and to do ―auto-

zoom‖ or to disable it:

Fig 3.16 Filter Level

33

In addition, when a spouse is added with the date of the wedding, this date is

automatically updated in the husband, too.

Other interaction which has been added to the trees is the possibility to delete one

created person. Moreover, if a child or grandparent is created without identifying the

person between the selected and the new person, an ―unknown‖ person is

automatically created between them.

Fig 3.17 Unknown Spouses

Finally, the interaction when the tree is saved, it must work correctly using Xml

files. However, this point has not been analyzed in detail as it is not relevant for the

topic of the present report.

34

4 REQUIREMENTS, ANALYSIS AND OVERALL DESIGN

In this chapter, I will present the requirements of the final program, which include the

requirements of the main panel, the ―event panel‖ and the way to store the information

of the tree. Then, I will list what the user can do with our system.

4.1 Requirements
Defining the requirements of the application in advance is very important. Thus, one

can get a general overview about the application to distribute the work properly

according to these requirements. In fact, there are two types of requirements: functional

requirement and non-functional requirement. I will make a list of requirements that our

system should fulfill.

4.2 Non-Functional Requirements

Non-functional requirement is a requirement that specifies criteria that can be used to

judge the operation of a system, rather than specific behaviors. It is often called quality

of a system, such as security, usability, testability, maintainability, extensibility,

scalability, etc.

N-FR1 The system should work fast

Importance Essential

Description The system should work fast. When the user wants to add/edit/show

information of a person, the window must appear immediately

N-FR2 The opening action should be quick

Importance Essential

Description The system must open a stored tree as fast as possible and visualize the

content in the correct panel.

N-FR3 The animation of the people should work fast

Importance Essential

Description The system must work properly when the user changes the current

person. Depending on the children of the current person it will have a

different animation and different colored action.
Table 4.1 Non Functional Requirements

35

4.3 Functional Requirements
In software engineering, a functional requirement defines a function of a software

system or its component. A function is described as a set of inputs, the behavior, and

outputs.

FR1 Add first person to the tree

Importance Essential

Description The system should be able to create the first person of the tree. This

person will be the oldest man of the family to have an order by building

the tree.

FR2 Add wife/children to the tree

Importance Essential

Description The system must be able to create and add a new person (a wife or a

child) to the tree

FR3 Edit a person

Importance Essential

Description The system must be able to show a window where the user can change

all the information of a specific person.

FR4 Show the information of a person

Importance Essential

Description The system must be able to show a window where the user can change

all the information of a specific person.

FR5 Get the information from Facebook

Importance Desirable

Description The user could choose to get the information of a new person from

Facebook

FR6 Save the tree

Importance Essential

Description The system must be able to save the tree in a file

FR7 Open a stored tree

Importance Essential

Description The system must be able to open and show a tree from a stored file in

the computer

FR8 Show the information of events

Importance Essential

Description The system must show a panel with the events of the people of the tree

FR9 Represent with different icons/images the different events

Importance Desirable

Description The event panel could show the different events with different pictures

because the user can distinguish easier different events.

FR10 Represent with different color the male and female

Importance Desirable

Description The system must show the people who are male and female in a

different color.
Table 4.2 Functional Requirements

36

4.4 Use Cases

Use case is a description of a system’s behavior as it responds to a request that

originates from outside of that system.

UC1 Change the color of the node of the tree

Description When the user selects one node of the tree (a person) to apply an

action with this node (add a new person, edit the information, show

information…) the node must be colored with green/pink color

depending on the sex of the person in that node.

Precondition The sex of the person must be defined

Postcondition The node is colored with the correct color.

Sequence

Diagram

Figure 4.1

Table 4.3 Use Case 1

Fig 4.1 Schema about changing color of node

UC2 Update the panel event

Description When a new person is added or a person in the tree is modified, the

file where the events are stored must be modified to show the new

information on the system. When the user wants to update the panel

event to see the new events must be updated this panel.

Precondition The file with the events must be created

Postcondition The file is updated with the new information

Sequence

Diagram

Figure 4.2

 Table 4.4 Use Case 2

37

Fig 4.2 The schema how works event panel.

UC3 Change the picture of the person

Description The user can change the picture of the person. This picture must be

available (if the picture is not deleted from the computer), although it

has been changed, for the next time the tree is opened.

Precondition The person has a default picture

Postcondition The person has a new picture

Sequence

Diagram

Figure 4.3

Table 4.5 Use Case 3

Fig 4.3 Schema how is working to change the picture.

38

5 IMPLEMENTATION
In this chapter, I would like to show the programming language, external libraries,

store system, integrated development environment (IDE), and operating system.

Moreover, I would like to continue with the description of the classes in my

application.

5.1 Issues

This section is important as I am going to deal with the different languages and

libraries which have been used to implement the application. In addition, I will explain

the way to create an application on the main site of Facebook.

5.1.1 XML

Extensible Markup Language (XML) is a set of rules for encoding documents in

machine-readable form. It is defined in the XML 1.0 Specification produced by

the W3C and several other related specifications, all gratis open standards.

XML’s design goals emphasize simplicity, generality, and usability over the

Internet. It is a textual data format with strong support via Unicode for the

languages of the world. Although the design of XML focuses on documents, it is

widely used for the representation of arbitrary data structures, for example in web

services.

Many application programming interfaces (APIs) have been developed that

software developers use to process XML data, and several schema systems exist to

aid in the definition of XML-based languages. As of 2009[update], hundreds of

XML-based languages have been developed, including RSS, Atom, SOAP, and

XHTML. XML-based formats have become the default for most office-productivity

tools, including Microsoft Office (Office Open XML), OpenOffice (Open Document)

and Apple’s iWork.

5.1.2 Servlets

A servlet is a Java programming language class used to extend the capabilities of

servers that host applications accessed via a request-response programming model.

Although servlets can respond to any type of request, they are commonly used to

extend the applications hosted by Web servers. For such applications, Java Servlet

technology defines HTTP-specific servlet classes.

Servlets provide component-based, platform-independent methods for building

Web-based applications without the performance limitations of CGI programs.

Unlike proprietary server extension mechanisms (such as the Netscape Server API

or Apache modules), servlets are servers as well as platform-independent. This leaves you

free to select a "best of breed" strategy for your servers, platforms, and tools.

Using servlets web developers can create fast and efficient server side application

which can run on any servlet enabled web server. Servlets run entirely inside the

Java Virtual Machine. Since the Servlet runs at server side so it does not checks the

browser for compatibility.

The javax.servlet and javax.servlet.http packages provide interfaces and classes for

writing servlets. All servlets must implement the Servlet interface, which defines

life-cycle methods. When implementing a generic service, you can use or extend the

http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Application_programming_interfaces
http://en.wikipedia.org/wiki/XML_schema
http://en.wikipedia.org/w/index.php?title=XML&action=edit
http://en.wikipedia.org/wiki/RSS
http://en.wikipedia.org/wiki/Atom_%28standard%29
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/XHTML
http://www.roseindia.net/servlets/what-is-servlets.shtml
http://www.roseindia.net/servlets/what-is-servlets.shtml

39

GenericServlet class provided with the Java Servlet API. The HttpServlet class

provides methods, such as doGet and doPost, for handling HTTP-specific services.

5.2 Prefuse

Prefuse is a set of software tools for creating rich interactive data visualizations.

The original prefuse toolkit provides a visualization framework for the Java

programming language. In addition, the Prefuse flare toolkit provides visualization

and animation tools for ActionScript and the Adobe Flash Player.

Prefuse supports a rich set of features for data modeling, visualization, and

interaction. It provides optimized data structures for tables, graphs and trees; a host

of layout and visual encoding techniques, and support for animation, dynamic

queries, integrated search, and database connectivity. Prefuse is written in Java,

using the Java 2D graphics library and it is easily integrated into Java Swing

applications or web applets. It is licensed under the terms of a BSD license, and can

be freely used for both commercial and non-commercial purposes.

5.2.1 Structures in Prefuse

In Prefuse there are some different kinds of structures to represent and store

the information which we want to work with. Prefuse has implemented these

structures making easier the work to the programmers. The problem is to

understand how they work and decide which one is better for our case.

The first structure we can find is the table. A Table organizes a collection of data

into rows and columns, each row contains a data record, and each column contains

data values for a named data field with a specific data type. Table data can be

accessed directly using the row number and column name, or rows can be

treated in an object- oriented fashion using Tuple instances that represent a single

row of data in the table. As such, tables implement the TupleSet interface.

Table rows can be inserted or deleted. In any case, none of the other existing

table rows are affected by an insertion or deletion. A deleted row simply becomes

invalid—any subsequent attempts to access the row either directly or through

a pre-existing Tuple instance will result in an exception. However, if news rows are

later added to the table, the row number for previously deleted nodes can be reused.

In fact, the lower row number currently unused is assigned to the new row. This

results in an efficient reuse of the table rows, but carries an important side effect --

rows do not necessarily maintain the order in which they were added once deletions

have occurred on the table. If not deletions occur, the ordering of table rows will

reflect the order in which rows were added to the table.

Collections of table rows can be accessed using both iterators over the actual row

numbers and iterators over the Tuple instances that encapsulate access to that row.

Both types of iteration can also be filtered by providing a Predicate, allowing

tables to be queried for specific values.

Columns (alternatively referred to as data fields) can be added to the Table using

addColumn (String, Class) and a host of similar methods. This method will

automatically determine the right kind of backing column instance to use.

Furthermore, Table columns can be specified using a Schema instance, which

describes the column names, data types, and default values. The Table class also

http://java.sun.com/j2ee/tutorial/api/javax/servlet/GenericServlet.html

40

maintains its own internal Schema, which be accessed (in a read-only way)

using the getSchema() method.

Tables also support additional structures. The ColumnMetadata class returned by

the getMetadata(String) method supports calculation of different statistics for a

column, including minimum and maximum values, and the number of unique data

values in the column. Index instances can be created and retrieved using

getIndex(String) method and retrieved without triggering creation using

getIndex(String) method. An index keeps a sorted collection of all data values in a

column, accelerating the creation of filtered iterators by optimizing query

calculations and also providing faster computation of many of the ColumnMetadata

methods. If you will be issuing a number of queries (i.e., requesting filtered

iterators) dependent on the values of a given column, indexing that column may

result in a significant performance increase, though at the cost of storing and

maintaining the backing index structure.

I talked before about Tuple. This one is so important to understand later the

composition of a person in the tree. The person will be a tuple of different values.

Tuples are objects representing a row of a data table, providing a simplified

interface to table data. They maintain a pointer to a corresponding row in a table.

When rows are deleted, any live Tuples for that row become invalidated and any

further attempts to access or set data with that Tuple will result in an exception.

The tree is a graph subclass that models a tree structure of hierarchical parent-

child relationships. For each edge, the source node is considered the parent, and the

target node is considered the child. For the tree structure to be valid, each

node can have at most one parent, and hence only one edge for which that node

is the target. In addition to the methods of the Graph class, the tree also supports

methods for navigating the tree structure, such as accessing parent or children nodes

and next or previous sibling nodes (siblings are children nodes with a shared

parent). Unlike the graph class, the default source and target key field names are

renamed to DEFAULT_SOURCE_KEY and DEFAULT_TARGET_KEY. Like the

Graph class, Trees are backed by node and edge tables, and use Node and

Edge instances to provide object-oriented access to nodes and edges.

The Tree class does not currently enforce that the graph structure remain

a valid tree. This is to allow a chain of editing operations that may break the tree

structure at some point before repairing it. Use the isValidTree() method to test the

validity of a tree.

The idea of the event panel is taken from one of the demos prefuse provides. But

only the idea, because I had to do a lot of changes to get the final result.

The changes between the original and the last version are clearly recognizable. The

first one is the way to take the information. The first one takes this information from

a list of words in a txt file. The final version takes the information from a txt file but

in this txt file there is a ―table‖ created. To separate the different attributes to

represent (the different events) the system creates a first row with the title of the

fields. This table is separated by tabs. The next rows will be created dynamical and

automatically when a person is added or edited.

The second change from the original code to the final code is the way how is

changing dynamically the representation. The first one had default values in the x-

http://prefuse.org/doc/api/prefuse/data/column/ColumnMetadata.html
http://www.prefuse.org/doc/api/prefuse/data/Tree.html#DEFAULT_SOURCE_KEY
http://www.prefuse.org/doc/api/prefuse/data/Tree.html#DEFAULT_TARGET_KEY
http://www.prefuse.org/doc/api/prefuse/data/Graph.html
http://www.prefuse.org/doc/api/prefuse/data/Node.html
http://www.prefuse.org/doc/api/prefuse/data/Edge.html
http://www.prefuse.org/doc/api/prefuse/data/Tree.html#isValidTree%28%29

41

axis. Now it will start with a value (present) and then more values will be added. At

the same time the events will be added, i.e. if there is a wedding a new field will

appear in the x- axis (and no more fields); if after that a death is added, it will

appear with the new value.

The third change is the title when the mouse is over an event. In the

first one, there was a lot of information and nothing related with our case.

The fourth change is in the y-axis. The values of the original were different and

nothing related to our case (there was a scale of euros and now is a scale of years).

Because of that, I changed the range of zoom of this scale and of course, the values.

The fifth change was in the filter with radiobuttons. This is the same case of the

x-axis. These radiobuttons are created dynamically with the information of a

person. It will filter the events by years. The default value will be the present. But if

some event happens in other year (i.e. in 1999), a new radiobutton appears with

the value 1999 and we will be able to be used to have a new filter.

The last change is in the visualization of the events. The original only was

different with the color and two forms. Now there are more forms to separate the

different events and more colors to be separated by year.

In the case of the Tree Panel I started (like with the event panel) to work

with one demo from Prefuse, but finally I had to dispose because it was

impossible to save all the information of a person in the tree and represent the

tree in the way I wanted. So, I only took the animations of the tree and I had to

think how to save the information of the person. The first thing I thought, it was to

create a class Person with all the attributes and then creating Nodes of person.

However, what is the problem of this idea? It is the time to store the information.

We wanted to store the information in an xml file with own tags. But a

person is not a field it, is an object and we cannot store a person only with tags.

The second and final solution was better to store the data and to send the

information to the event panel. This problem is solved creating a table in parallel

with the tree saving the information of the people there (with all the attributes of the

person). Why is this better to store with an xml file? Because the tree can be

represented with tags but the content of these tags must be ―primary classes‖

(Integer, String, Boolean…). I can send all this information to a txt file which will

be used by the event panel.

5.2.2 Visualizations in Prefuse

Prefuse also provides some demos of visualizations. Some parts of these demos I

could use for the application. But the most important part of these demos is the

animations they have.

Graphics using the structure of the tree:

42

Fig 5.1 DocuBurst taken from [7]

Fig 5.2 GraphView taken from [7]

Example in prefuse of structures using tables or files to get the information:

43

Fig 5.3 FishEye taken from [7]

Fig 5.4 Congress taken from [7]

5.2.3 Connecting with Facebook
The first thing I did was to establish a connection to Facebook in order to create the

application on Facebook. To do this, the first step is request Facebook about

how to become a developer. Once you have the privileges of developer, then you

register your application with a name, an icon and configure more options.

After this, Facebook provides you a public key and the secret key. With this secret

key only the developer can connect it in order to develop everything on Facebook.

Also, Facebook provides the AppName, the Callback URL, the Canvas page, the

iFrame and the post-add URL. We will need the appName, the iFrame and the public

and secret key.

44

Fig 5.5 Window: name of Application from Facebook.

Fig 5.6 Data about the application (the keys, id,name CallbackURL…)

45

Fig 5.7 Window: Submit your application to Facebook

The next step is to download the API of Facebook to connect to our Java

Application with the social network.

Then, Facebook notifies that you need to work with J2EE, necessary to connect

later with Facebook.

The way Facebook works ―requires‖ you to provide a webserver for your app, for

that reason we need to find a server and install J2EE. This is like J2SE (the normal

way to programming) with more libraries; we need few of these libraries. What is

exactly J2EE?

Java Enterprise Edition (J2EE): J2EE is a platform-independent, Java-centric

environment for developing, building and deploying Web-based enterprise

applications online.J2EE includes many components of the Java Standard Edition

(J2SE).The J2EE platform consists of a set of services, APIs, and protocols that

provide the functionality for developing multitier, Web-based applications.

J2EE simplifies application development and decreases the need for programming

and programmer training by creating standardized, reusable modular components and

by enabling the tier to handle many aspects of programming automatically.

If you are an enterprise developer you need J2EE. Enterprise developers need

J2EE because writing distributed business applications is not easy, and they need a

high- productivity solution that allows them to focus only on writing their business

logic and having a full range of enterprise-class services to rely on, like transactional

distributed objects, message oriented middleware, and naming and directory services.

iFrames is important to connect Java with Facebook. This will be the ―library‖

which allows us implement the server and interact with Facebook.

Actually, the way Facebook have designed their system, you need your own

webserver anyway. In another hand, they will not let you make a Facebook App

without one.

46

Facebook provides you with a java class, FacebookRestClient.java, which you can

use to authenticate with the FB servers. Once you have authenticated an instance of

this class, that class will then also provide you with access to all the features

of Facebook (reading data about users, sending messages to other users, etc). Of

course, this class must be implemented on the servlet.

Traditionally, when writing a J2EE app, you have multiple servlets, one for each

―page‖ of your website, but in order to authenticate, the servlet must redirect

the user back to Facebook, which will then always send the user back to your

Callback URL page. That means that they will be sent to the ―wrong‖ page.

In conclusion, Facebook only allows one servlet to authenticate with Facebook,

effectively; whichever servlet you gave the address of when you filled in the

―callback URL‖ field when creating your app on Facebook’s Developer page.

5.2.4 Summary

To start with the application I had to decide about what technologies were better for my

final task, because depending on the final result, it could be easier to build the system

with different programming languages and different kind of trees.

The final choice was to create a Classical Hierarchical Tree, although I had to hide

the data that was not directly connected with the current person in order to avoid the

problem with the unused space.

The technology to create the system finally was Java. Why? It is because Prefuse and the

library SWING offered a good and interesting GUI to visualize the data. Moreover

programming in Java is easier for me. The other case would have been more difficult

because I must have learned about that programming language.

Finally, to store the data of the tree, we will use XML because is ―universal language‖ on

the Internet and if we wanted to upload this file to a server we could visualize the

information of the xml because the data is stored with tags and values.

Why did I explain the servlets if finally I have not used use them? Because this is the step

I need to connect with the social networking (Facebook in our case). Without a server to

install the servlet which connect the java application with Facebook to take the data of the

contacts on Facebook I do not need to implement it. Even though, it is important to

know how servlets are working if we have a server and we want to connect with

Facebook in a future.

In the appendix I will explain the tools, languages and libraries which I was working

with. Also I will explain some important classes of the application with a brief description in

more detail.

47

6 CONCLUSIONS
In this Chapter, I will retake the goal of the thesis and give the conclusions and the

experience I have had implementing this thesis. At last, the future work could be done

in the application like more modules, improvements or more checking.

 6.1 Conclusion

The goal of the thesis is to develop an application (for example Facebook application)

that will allow users to build and share visualization of genealogical data.

Additionally it should visualize time-dependant data, such as various events like

marriage, etc.

Finally, the application can manage all this information and create the visualization

for the user. It works properly and the main goals are fulfilled. The user will find a

Facebook application, the visualization will change automatically when the user

interact with the program and will be able to store and open trees created.

Taking into account that one task of this thesis is to create the application for

the social network and there, users want something user-friendly and aesthetically

pleasing interface, which is the biggest difference to build an application for a company

(could be more specifically and complicated or do not care if has a look and feel

interface) and an application for a social network.

6.2 Experience

To start with the application, it was necessary to start studying the different

technologies to work with trees graphically. This is because it is necessary to have a

look and feel presentation of the application to get the attention of the user. Possibly the

user of the social network will not be interested to use the application without a good

GUI and a good presentation of this topic. I can say that I have experience an

improvement with in knowledge of the GUI in Java.

When I decided to work in technologies, I started with the implementation. I needed

to study the code that Prefuse provides about trees, tables and how to store the

information in a file. I decided to study this technology because Prefuse also provides

friendly animations with the interface. The conclusion of this part is that I learnt about

this unknown library for me and the possibilities that Prefuse provides to store and

visualize the data.

The second technology I am experienced with is XML. For saving information I

used xml files. I had to change some code, in order to be able to save a person and not

only fields without any relation.

Finally, it has been interesting for me to see how to register the application on

Facebook and having the public key, the secret key and the name of the application. If

one day we have a server to install a servlet there and to interact between Java and

Facebook, taking the information of the people from the social network. This part is

very interesting for me because I did not know anything about the ―Developers‖

Section of Facebook and it has provided me some different tools to implement my own

application and use the information that Facebook provides to the developer.

Now when the thesis is finished, I got a new idea about how to visualize the

graphics. The most important idea about the visualization of the data is how the user

will understand the graphic we are representing. With the first visualization, the user

must be able to understand how the application is working and what it is been

48

visualized exactly on the screen. Because of these reasons, I was really motivated to

work on it.

Moreover, it has been a good opportunity to learn and work on this topic of the

computer science, to learn more about programming, to learn about a social network

interacts with the users, to work with which are unknown to me such as xml,

servlets or to create an application on Facebook.

6.3 Future Work

Due to the limited time, there are some works left and other one that could have been

improved or done in another way.

1. The first is implementing the connection between Facebook and Java. As I have

mentioned before in the subsection 3.1.5, it is necessary a server to implement

and install the servlet, to connect with Facebook.

2. The second one could be more checks up when a person is added. For example,

check the dates: The date of the divorce after the wedding, the date of a birth

before death and wedding…

49

APPENDIX

A.1 Tools, languages and libraries

Programming

language

Java J2EE

Description Language for developing, building and deploying Web-based

enterprise applications online

Library JUNG

Description Java Universal Network/Graph Framework is a software library

that provides a common and extendible language for the

modeling, analysis, and visualization of data that can be

represented as a graph or network. Just used for some

animations.

Library Prefuse

Description Prefuse is a set of software tools for creating rich interactive data

visualizations. The original prefuse toolkit provides a

visualization framework for the Java programming language.

Library Swing

Description Swing is a widget toolkit for Java. Swing provides a native look

and feel that emulates the look and feel of several platforms, and

also supports a pluggable look and feel that allows applications

to have a look and feel unrelated to the underlying platform.

Store

management

XML

Description Extensible Markup Language (XML) is a set of rules for encoding

documents in machine-readable form. It is defined in the XML 1.0

Specification produced by the W3C, and several other related

specifications, all gratis open standards. XML was designed to

transport and store data.

Operating

system

Linux Ubuntu 10.01/Windows XP (Java is multiplatform)

IDE Eclipse for Java EE Platform Version: Galileo

Description Eclipse is a multi-language software development platform

comprising an IDE and plug-in system to extend it. It is written

primarily in Java and is used to develop applications in this

language

Table A.1 Tools, Languages and libraries

http://en.wikipedia.org/wiki/Widget_toolkit
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Look_and_feel
http://en.wikipedia.org/wiki/Look_and_feel
http://en.wikipedia.org/wiki/Pluggable_look_and_feel
http://en.wikipedia.org/wiki/Machine-readable
http://en.wikipedia.org/wiki/W3C
http://en.wikipedia.org/wiki/Gratis
http://en.wikipedia.org/wiki/Open_standard

50

A.2 Class Description

In this section, I will present the detailed implementation by explain the core classes

description.

A.2.1 Class Description of Visualizations.

Class TreeGen

Description This class has the main method and is used to visualize the

main window with the 2 panels

Inner classes AutoPanAction: The actions the tree must to do when the user

is interacting with it.

NodeColorAction: The action to color the node depending of

some attributes of the Node.

OrientAction: The actions must do the tree when the user wants

to change the orientation or the visualization size of the tree

Methods Demo (): Creates the window and the structure of the tree

empty

Demo (String, String): Creates the window with the structure of

the tree from a file with the name of the String

Demo (String, String, Boolean): Creates the same of last one

but when the user chooses the option open a file.

TreeGen (Tree,String): Creates the object TreeGen.

AddChildToTree(): Add a new child to tree.

AddDadtoTree(): Add the first node of the tree.

AddWifetoTree(): Add a wife to the current node.

EditChildToTree(): Edit the information of the current node.

getOrientation(): Get the orientation of the tree.

setOrientation (int): Set the orientation vertical/horizontal

depending of the integer.

Structure

Diagram

Table A.2

Table A.2 Class Description TreeGen

Fig A.1 Schema of Class TreeGen

51

Class Vista

Description This class creates the window for add a new Child to the current

Node (the same cases for add a wife and add the first node).

Inner classes OyenteBoton: The class listener for the buttons of the window.

This is the important code in this class because it will send the

information to the tree.

Methods Getters and Setters of the attributes.
Vista (TreeGen): Creates the Frame where there will be the

fields to fill the information of the person

Table A.3 Class Description Vista

Class Edit

Description This class creates the window for edit the information of the

person of the current Node

Inner classes OyenteBoton: The class listener for the buttons of the window.

The same of the last explained class. Here will be the important

code.

Methods Getters and Setters of the attributes.
Edit (TreeGen, Node): Creates the Frame where there will be the

fields to fill the information of the person
Table A.4 Class Description Edit

Class VentanaDos

Description This class creates the window for show the information of the

person is in the current Node

Inner classes OyenteBoton: The class listener for the buttons of the window

Methods Getters and Setters of the attributes.
VentanaDos (Node): Creates the Frame where there will be the

fields with the information of the person and the picture. This

one could be changed clicking on it.

Table A.5 Class Description VentanaDos

Class Congress

Description This class creates the event panel

Inner classes Counter: count the total of a group

Methods Getters and Setters of the attributes.
Congress (Table): Creates the Panel of the Events taken the

information from the given table.

DisplayLayout (): display the format of the panel.

Structure

Diagram

Figure A.2

Table A.6 Class Description Congress

52

Fig A.2 Schema of class Congress

Class Display

Description This class is responsible for drawing items to the screen and

providing callbacks for user interface actions such as mouse and

keyboard events. A Display must be associated with a

Visualization from which it pulls the items to visualize.

Inner classes InputEventCapturer: to capture all mouse and key events on the

display, detects relevant VisualItems, and informs

ControlListeners.

TransformActivity: Activity for conducting animated view
transformations.

53

Methods Getters and Setters of the attributes.
Display(): Creates a new Display instance. You will need to

associate with a Visualization for it to display anything.

Display (Visualization): Creates a new Display associated with

the given Visualization. By default, all VisualItem instances in

the Visualization will be drawn by the Display.

Display (Visualization,String): Creates a new Display associated

with the given Visualization that draws all VisualItems in the

visualization that pass the given Predicate. The precicate string

will be parsed by the ExpressionParser to get a Predicate

instance.

Display (Visualization, Predicate): Creates a new Display

associated with the given Visualization that draws all

VisualItems in the visualization that pass the given predicate.

AddControlLintener(Control): Adds a ControlListener to receive

all impugn events on VisualItems.

AddPaintListener (PaintListener): Add a PaintListener to this

Display to receive notifications about paint events.

AnimatePan(double, double, long): Animate a pan along the

specified distance in screen (pixel) coordinates using the

provided duration.

Update (Graphics): Update the display.

Zoom (Point2D, double): Zooms the view provided by this

display by the given scale, anchoring the zoom at the specified

point in absolute coordinates.

Structure

Diagram

Fig A.3

 Table A.7 Class Description Display

54

Fig A.3 Schema of class Display

Class Visualization

Description This class is responsible for managing the mappings between

source data and onscreen. VisualItems, maintaining a list of

display instances responsible for rendering of and interaction

with the contents of this visualization, and providing a collection

of named Action instances for perfoming data processing such as

layout, animation, size, shape and color assignment.

Methods Getters and Setters of the attributes.
Visualization (): Creates a new, empty Visualization. Uses a

DefaultRendererFactory.

AddDisplay(Display): Add a display to this visualization. Called

automatically by the setVisualization (Visualization) method in

Display class.

AddTree(String,Tree): Add a tree to this visualization, using the

given data group name. A visual abstraction of the data will be

created and registered with the visualization. An exception will be

thrown if the group name is already in use.

Structure

Diagram

Fig A.4

Table A.8 Class Description Visualization

55

Fig A.4 Schema of Visualization

A.2.2 Class Description of Data Information.

Class Person

Description This class creates objects of person. Is the step to store this data

between the user interface and the table will be finally stored in a

xml file.

Methods Getters and Setters of the attributes.
Person(): Create a person by default. Empty fields.

Person(String, Integer): Create a person with the given name and

given year of born.

toString(): Shows the information of the name of the person to

visualize in the tree.

Structure

Diagram

Fig A.5

Table A.9 Class Description Person

56

Fig A.5 Schema of Person

Class TreeMLReader

Description GraphReader instance that reads in tree-structured data in the

XML-based TreeML format. TreeML is an XML format

originally created for the 2003 InfoVis conference contest. A

DTD (Document Type Definition) for TreeML is available

online

Inner classes TreeMLHandler: A SAX Parser for TreeML data files. Interface

Tokens: String tokens used in the TreeML format

Methods readGraph(InputStream): Read in a graph from the given
InputStream.

Table A.10 Class Description TreeMLReader

Class TreeMLWriter

Description GraphWriter instance that writes a tree file formatted using the

TreeML file format. TreeML is an XML format originally

created for the 2003 InfoVis conference contest. A DTD

(Document Type Definition) for TreeML is available online

Methods writeGraph(Graph,OutputStream): Write a graph from the given
OutputStream.

Table A.11 Class Description TreeMLWriter

57

Class TableReader

Description Interface for classes that read in Table data from a particular file

format

Methods readTable(File): Read in a table from the file at the given

location. Though not required by this interface, the String is

typically resolved using the method, allowing URLs, classpath

references, and files on the file system to be accessed.

readTable(URL): Read in a table from the given URL.

readTable (File): Read in a table from the given File.
readTable (InputStream): Read in a table from the given

InputStream.

Structure

Diagram

Fig A.6

Table A.12 Class Description TableReader

Fig A.6 Schema of TableReader

58

Class DelimitedTextTableReader

Description TableReader for delimited text files, such as tab-delimited or

pipe-delimited text files. Such files typically list one row of table

data per line of the file, using a designated character such as a

tab or pipe to demarcate different data columns. This class

allows you to select any regular expression as the column

delimiter

Methods DelimitedTextTableReader(): Create a new

DelmitedTableReader for reading tab-delimited files using a

default parser factory

DelimitedTextTableReader(ParserFactory): Create a new

DelimitedTextTableReader for reading tab-delimited files.

DelimitedTextTableReader(String): Create a new

DelimitedTextTableReader using a default parser factory.

DelimitedTextTAbleReader (String,ParserFactory): Create a new

DelmitedTextTableReader.

Read(InputStream, TableReaderListener): Read the text file

given.

Structure

Diagram

Fig A.7

Table A.13 Class Description DelimitedTextTableReader

Fig A.7 Schema of DelimitedTextTableReader

59

Class TableWriter

Description Interface for classes that write Table data to a particular file

format

Methods writeTable (Table,String): Write a table to the file with the given

filename.

writeTable(Table, File): Write a table to the given File.
writeTable (Table, OutputStream): Write a table from the given

OutputStream.

Structure

Diagram

Fig A.8

Table A.14 Class Description TableWriter

Fig A.8 Schema of TableWriter

Class DelimitedTextTableWriter

Description TableWriter that writes out a delimited text table, using a

designated character string to demarcate data columns. By

default, a header row containing the column names is included in

the output.

Methods Getters and Setters.
DelimitedTextTableWriter(): Create a new DelmitedTableWriter

that writes tab-delimited text files.

DelimitedTextTableWriter(String): Create a new

DelmitedTableWriter.

DelimitedTextTableWriter(String,bool): Create a new

DelmitedTableWriter.

writeTable (Table, OutputStream): Write the table in the Output.

Table A.15 Class Description DelimitedTextTableWriter

60

REFERENCES

[1] http://www.facebook.com/note.php?note_id=107849347899 (2010/6/10)

[2] http://digitalcitizen.ca/2009/04/19/why-many-people-dont-believe-in-the-power-of-

social-media/ (2010/8/18)

[3] http://www.elcomerciodigital.com/apoyos/especiales/enlacereal2/arbol_prin
 ipe.htm (2010/6/9)

[4] http://cs.msi.vxu.se/isovis/ (2010/6/1)

[5] JUDITH R. BROWN …[ET AL.] Visualization: Using computer graphics to explore data
and present information (1995) John Wiley & Sons, Inc., USA

[6] http://atalap1.blogspot.com/2009/04/arbol-genealogico.html (2010/5/28)

[7] http://prefuse.org/ (2011/4/15)

[8] http://en.wikipedia.org/wiki/Java_%28programming_language%29 (2010/06/3)

[9] http://download.oracle.com/javase/tutorial/ui/overview/intro.html (2010/6/7)

[10] http://en.wikipedia.org/wiki/Swing_%28Java%29 (2010/7/4)

[11] http://www.w3schools.com/XML/xml_whatis.asp (2011/4/11)

[12] http://en.wikipedia.org/wiki/XML (2011/04/11)

[13] http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets2.html (2011/3/10)

[14] http://www.hoppy.com/family/family.htm (2010/4/19)

[15] http://thebankshow.com/2008/03/26/car‐ company‐ family‐ tree/ (2010/4/19)

[16] http://www.balgownie.co.uk/ (2011/2/21)

[17] http://www.phpgedview.net (2010/11/14)

[18] http://jung.sourceforge.net (2011/04/11)

[19] http://flare.sourceforge.net (2010/10/23)

[20] http://cs.lnu.se/isovis/theses/ongoing/ (2011/4/28)

[21] http://linnaeus.academia.edu/Departments/Computer_Science (2010/12/12)

http://www.facebook.com/note.php?note_id=107849347899
http://digitalcitizen.ca/2009/04/19/why-many-people-dont-believe-in-the-power-of-social-media/
http://digitalcitizen.ca/2009/04/19/why-many-people-dont-believe-in-the-power-of-social-media/
http://www.elcomerciodigital.com/apoyos/especiales/enlacereal2/arbol_prin
http://cs.msi.vxu.se/isovis/
http://atalap1.blogspot.com/2009/04/arbol-genealogico.html
http://prefuse.org/
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://download.oracle.com/javase/tutorial/ui/overview/intro.html
http://en.wikipedia.org/wiki/Swing_%28Java%29
http://www.w3schools.com/XML/xml_whatis.asp
http://en.wikipedia.org/wiki/XML
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets2.html
http://www.hoppy.com/family/family.htm
http://thebankshow.com/2008/03/26/car-company-family-tree/
http://www.balgownie.co.uk/
http://www.phpgedview.net/
http://jung.sourceforge.net/
http://flare.sourceforge.net/
http://cs.lnu.se/isovis/theses/ongoing/
http://linnaeus.academia.edu/Departments/Computer_Science

61

[22] http://www.gramps‐ project.org (2011/2/10)

[23] http://www.phpgedview.net/ (2010/11/14)

[24] http://www.myheritage.com (2010/11/14)

[25] http://flare.prefuse.org (2010/10/23)

[26] TIPPING, M.E. BISHOP Artificial Neural Networks, Fifth International Conference on

(Conf. Publ. No. 440) (1997) Neural Comput. Res. Group, Aston Univ., Birmingham

[27] MCGUFFIN, M.J. BALAKRISHNAN, R. Interactive Visualization of Genealogical Graphs
(2005) Dept. of Computer Science, Toronto Univ., Ontario.

[28] HERMAN, G. MELANON, M.S. MARSHALL. Graph Visualization and Navigation in
Information Visualization (2000) Centre for Mathematics and Computer Sciences (CWI)

 [29] http://en.wikipedia.org/wiki/Treemapping (2011/3/3)

 [30] MINNIE F. MICKLEY, Our Acnestors: The Kern Family of America (1912) NGS Quartely

 [31] CLIFFORD K. SHIPTON, “Report of the Council”, Proceedings of the American Antiquarian
Society (1960, 70) Worcester

 [32] ELIZABETH SHOWN MILLS, Genealogy in the “Information Age” (1732) NGS Quartely

 [33] ANDREJ MRVAR, VLADIMIR BATAGELJ, Relinking marriages in Genealogies (2004)
Metodoloski zvezki

 [34] ANASTASIA BEZERIANOS… [ET AL.], GeneaQuilts: A System for Exploring Large
Genealogies (2010) IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS.

 [35] CLAURISSA TUTTLE… [ET AL.], PedVis: A Structured, Space-Efficient Technique for Pedigree
Visualization (2010) IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS.

 [36] NAM WOOK KIM… [ET AL.], Tracing Genealogical Data with TimeNets (2010) Computer
Science Department, Stanford University

http://www.gramps-project.org/
http://www.phpgedview.net/
http://www.myheritage.com/
http://flare.prefuse.org/
http://www.cwi.nl/
http://en.wikipedia.org/wiki/Treemapping

SE-391 82 Kalmar / SE-351 95 Växjö

Tel +46 (0)772-28 80 00

dfm@lnu.se
Lnu.se/dfm

