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Abstract: The goal of digital forensics is to recover and investigate pieces of data found on digital devices,
analysing in the process their relationship with other fragments of data from the same device or from
different ones. Approximate matching functions, also called similarity preserving or fuzzy hashing
functions, try to achieve that goal by comparing files and determining their resemblance. In this regard,
ssdeep, sdhash, and LZJD are nowadays some of the best-known functions dealing with this problem.
However, even though those applications are useful and trustworthy, they also have important limitations
(mainly, the inability to compare files of very different sizes in the case of ssdeep and LZJD, the excessive
size of sdhash and LZJD signatures, and the occasional scarce relationship between the comparison score
obtained and the actual content of the files when using the three applications). In this article, we propose
a new signature generation procedure and an algorithm for comparing two files through their digital
signatures. Although our design is based on ssdeep, it improves some of its limitations and satisfies
the requirements that approximate matching applications should fulfil. Through a set of ad-hoc and
standard tests based on the FRASH framework, it is possible to state that the proposed algorithm presents
remarkable overall detection strengths and is suitable for comparing files of very different sizes. A full
description of the multi-thread implementation of the algorithm is included, along with all the tests
employed for comparing this proposal with ssdeep, sdhash, and LZJD.

Keywords: approximate matching; context-triggered piecewise hashing; edit distance; fuzzy hashing;
LZJD; multi-thread programming; sdhash; signatures; similarity detection; ssdeep

1. Introduction

Digital forensics is the branch of Mathematics and Computer Science in charge of identifying,
recovering, analysing, and providing conclusions about digital evidence found on electronic devices.
When inspecting the content of a computer or a mobile phone, the first step for the digital forensics
expert is to reduce all the data available, extracting the important information that can be analysed more
efficiently [1].

An initial strategy to obtain that reduction consists in using cryptographic hashing functions such as
MD5 or SHA-1. Even though those algorithms are not recommended for cryptographic purposes, they
are still valid for determining if two files are the same, considering that the probability for two files to
have the same hash value is negligible. Precisely due to this reason, NIST (National Institute of Standards
and Technology) developed a database in the early 2000s, called NSRL (National Software Reference
Library), which contains hash values of sets of files of several trusted operating systems [2]. Nevertheless,
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these cryptographic hashing functions face a common problem when comparing files. If one of the files is
modified even just in one byte, the final outcome of the comparison is negative.

In contrast to cryptographic hashing functions, approximate matching functions [3], also known as
similarity preserving hashing (SPH) or fuzzy hashing functions, try to detect the resemblance between two
files by linking similar inputs to similar outputs, indistinctly called in this context similarity signatures,
fingerprints or digests [3]. These functions, which analyse files at byte level, are useful to compare a
large variety of data and detect similar texts and even embedded objects (e.g., an image in a Word or
OpenDocument text file) or binary fragments (e.g., a virus inside a file, a specific data packet in a network
connection or similar content in audio files). By using a diversity of methods (for example, computations
with a sliding window, as it will be described in next sections), approximate matching functions are able to
identify if even a single byte is changed.

In computer forensics, ssdeep is the best-known bytewise approximate matching application, and
it is considered by some researchers as the de facto standard in some cybersecurity areas [4]. The
implementation of ssdeep allows the generation of the signature of files (where the generated signature
depends on the actual content of the file) and to compare two signature files or one signature file with
a data file. The results in both cases are the same, using one method or the other depends on the data
available to the user. However, even though ssdeep represented an important achievement in similarity
detection techniques, and it is relatively up to date (at the time of writing this text, the latest version
is 2.14.1, released in November 2017 [5]), during the last years some limitations have been highlighted
by several researchers, publishing different enhancements or alternative theoretical approaches (see, for
example, References [6–13]).

In this article we have delved on the most important limitations of ssdeep, sdhash, and LZJD, which
are mainly the impossibility of comparing files of very different sizes in the case of ssdeep and LZJD, the
scarce relationship between the comparison score obtained and the actual content of the files when using
the three applications in some cases, and the excessive size of sdhash and LZJD signatures. As a result of
our research, we are presenting in this contribution a signature generation procedure based on the one
implemented in ssdeep had but that overcomes its design limitations, together with an easy-to-implement
algorithm for comparing the content of two files through their digital signatures. We can confirm that,
based on the list of requirements that, in our opinion, any similarity search function should fulfil, our
algorithm provides results better adjusted to different situations than ssdeep and is able to compare any
pair of files regardless of their respective size. Besides, our proposal can manage some signatures that
represent certain special cases that include different content swapping schemes.

In order to obtain meaningful results, in addition to ssdeep we have also considered sdhash and
LZJD in our tests. sdhash is also very popular and is representative of a completely different theoretical
approach in approximate matching algorithms, as it uses Bloom filters in order to find the features that
have the lowest empirical probability of being encountered by chance [14]. On the other hand, LZJD is
a recent alternative that uses the Lempel-Ziv Jaccard distance [15]. As a result of the comparison with
sdhash and LZJD, we can state that our algorithm provides better results regarding the recognition of the
proportion of a file which is present in another file while generating significantly smaller signatures in
almost all the cases where those two algorithms are used.

This article represents an improved version of the information presented as a PhD thesis by one
of the authors in 2015 [16], where SiSe (Similarity Search) was first described (this thesis has not been
published but it is available as open access at http://oa.upm.es/39099/). Compared to that work, this
contribution features a different signature comparison algorithm and new tests, some of them using
FRASH (Framework to test Algorithms of Similarity Hashing), a reputed tool designed for comparing this
type of applications. As another novelty, this article includes the design details of the multi-threading C++
implementation of the proposed algorithm (allowing researchers to inspect the code of our implementation,
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uploaded to GitHub [17]), compares the application to the latest version of ssdeep (which in the last years
has evolved and fine-tuned its capabilities), and broadens the comparative spectrum by adding LZJD to
the test set.

The rest of this paper is organised as follows—Section 2 discusses the related work. Section 3 reviews
the most significant features of ssdeep. In Section 4, we provide a complete description of our proposed
algorithm. Section 5 describes the C++ implementation of SiSe, including the multi-thread design. Section 6
contains the ad-hoc tests that we have performed with a selected group of files in order to compare the
similarity detection capabilities of our proposal to those of ssdeep, sdhash, and LZJD. Section 7 contains
the tests performed with the FRASH framework and a well-known dataset. Finally, Section 8 summarises
our conclusions about this topic.

2. Related Work

SPH functions can be divided into four categories [18]—Block-based hashing (BBH) functions,
context-triggered piecewise hashing (CTPH) functions, statistically-improbable features (SIF) functions,
and block-based rebuilding (BBR) functions, as described in the following paragraphs.

BBH functions generate and store cryptographic hashes for every block of a chosen fixed size (e.g.,
512 bytes). In the next step, the block-level hashes from two different inputs are compared counting
the number of common blocks and giving a measure of similarity between them. An implementation
of this kind of fuzzy functions was developed by Nicholas Harbour, who created a program called
dcfldd [19]. This function divides the input data into several blocks of a fixed length and calculates the
corresponding cryptographic hash value for each of them. Even though this approach is very efficient
from a computational point of view due to its simplicity, a single byte insertion or deletion at the beginning
of a file could change all the block hashes, making this scheme too vulnerable.

The technique behind CTPH was originally proposed by Andrew Tridgell [20], who implemented
spamsum, a context-triggered piecewise hashing application devoted to the identification of spam
e-mails [21]. Its basic idea consists in locating content markers, called contexts, within a binary data
object, calculating the hash of each fragment of the document delimited by the corresponding contexts,
and storing the sequence of hashes. Thus, the boundaries of the fragments are based on the actual content
of the object and not determined by an arbitrarily fixed block size. In 2006, based on spamsum, Jesse
Kornblum developed ssdeep [22], one of the first programs for computing context-triggered piecewise
signatures. This algorithm generates a matching score in the range 0–100. This score must be interpreted
as a weighted measure of how similar these files are, where a higher result implies a greater similarity of
the files [23].

The SIF approach is based on the idea of identifying a set of features in each of the objects under
study and then comparing the features, where a feature in this context is a sequence of consecutive bits
selected by some criteria from the file that stores the object. As a practical implementation of the concept,
Vassil Roussev decided to use entropy in order to find statistically-improbable features [24]. With this
idea, he proposed a new algorithm called sdhash, whose goal was to pick object features that are least
likely to occur by chance in other data objects [25]. This algorithm produces a score between 0 and 100
that, according to its author, must be interpreted as a confidence value indicating how certain the tool is
that the two data objects under comparison have non-trivial amounts of commonality [26].

A more recent example of this approach is LZJD, a proposal made by Edward Raff and Charles K.
Nichola [15]. LZJD uses the same command-line arguments as sdhash but implements a different distance
function, the Lempel-Ziv Jaccard distance [15]. According to its author, LZJD scores range from 0 to 100
and can be interpreted as the percentage of bytes shared by two files, which makes it comparable to the
other applications considered in this contribution.
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In turn, BBR functions use external data, which are blocks chosen randomly, uniformly or in a fixed
way, in order to rebuild a file. The process compares the bytes of the original file to the chosen blocks and
calculates the differences between them, using the Hamming distance or any other metric. Two of the best
known implementations of this approach are bbHash [10] and SimHash [27].

It is important to mention that, while there are other high-level information retrieval techniques based
on the semantic analysis of the content (e.g., see References [28–30]), SPH tools work at a lower level by
directly analysing the value of the content as a byte sequence.

When analysing the similarity between two files, it is important to distinguish the concepts of
resemblance and containment. While resemblance indicates how much an object looks like another one,
containment indicates the presence of an object inside another one [31]. SPH applications adjust their
results to either one of these concepts or both. As it will become clear later, our proposal uses a combination
of both concepts.

Other interesting approach developed in recent years is TLSH (Trend Micro Locality Sensitive
Hash) [32], a Locality Sensitive Hashing (LSH) application which is related to work done in the data mining
area. LSH algorithms classify similar input items into the same groups with high probability, maximizing
hash collisions [33]. However, while ssdeep, sdhash, and LZJD provide a similarity score between two
digests in the range [0–100], in TLSH a distance score of 0 represents that the files are identical and higher
scores represent a greater distance between the analysed documents. As TLSH does not imposes a limit
on the score (according to the authors it can potentially go up to over 1000), it is not possible to directly
compare its results to those of the other applications, so we decided not to include it in our tests.

3. Review of Ssdeep

The kernel of the signature generation algorithm in ssdeep is a rolling hash very similar to the one
employed in spamsum [21] and rsync [34]. The rolling hash is used to identify a set of trigger points in
the file that depend on the content of a sliding window of 7 bytes (i.e., the number and location of the
trigger points totally depend on the content that is processed by the application, as every byte is taken into
account in the calculations). The algorithm hits a trigger point every time the rolling hash (based on the
Adler-32 function [35]), produces a value that matches a predefined condition. A second hashing function
based on the FNV (Fowler-Noll-Vo) algorithm [36] is consequently used to calculate the hash values of
the content located between two consecutive trigger points. Then, the last 6 bits of each hash value is
translated into a Base64 character. The final signature is formed by concatenating the single characters
generated at all the trigger points (with a maximum of 64 characters per signature).

The number of characters of the signature is strongly determined by the frequency of appearance
of the trigger points. Therefore, the first step that must be completed by the algorithm is to estimate the
value of the block size that would produce a final signature of 64 characters. More precisely, the value of
the initial block size is the smaller number of the format 3 · 2n (where n is a positive integer value) which is
not lower than the value obtained after dividing by 64 the input size in bytes. Another condition is that
if the length of the signature generated does not reach 32 characters, ssdeep modifies the block size and
executes the algorithm another time to produce a new signature. This process is done repeatedly until the
signature obtained is of at least 32 characters

The signature generation algorithm produces two signatures in order to be able to compare a higher
number of files. The reason for that is that sometimes similar files have slightly different block sizes. The
two signatures are known as the leading signature, which uses a certain value for the block size (the
leading block size), and the secondary signature, whose secondary block size value is twice the value of
the leading block size.
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The signature format produced by ssdeep consists of a header followed by one hash per line. The
content of the header used in its latest versions is the following:

ssdeep,1.1--blocksize:hash:hash,filename,

where the element ssdeep identifies the file type, 1.1 informs about the version of the file format (not to be
confused with the version of the program), -- acts as a separator, and the remainder of the line identifies
the elements displayed below the header (block size, primary hash, secondary hash, and filename).

In Information Theory, the edit distance between two strings of characters generally refers to the
number of operations required to transform one string into the other. There are several ways to define the
edit distance, depending on which operations are allowed. The ssdeep edit distance algorithm is based on
the Damerau-Levenshtein distance between two strings [37,38].

That distance compares two strings and determines the minimum number of operations necessary to
transform one string into the other. The only operations allowed in this distance comparison are insertions,
deletions, substitutions of a single character, and transpositions of two adjacent characters [39,40].

In ssdeep, insertions and deletions have a weight of 1, substitutions a weight of 3, and transpositions a
weight of 5. For instance, using this algorithm, the distance between the strings “Saturday” and “Sundays”
is 5, as it can be seen in the following sequence, where the elements in bold format represent the characters
that are added or removed at each step:

Saturday
deletion
−−−−−−→ Sturday

deletion
−−−−−−→ Surday

deletion
−−−−−−→ Suday

insertion
−−−−−−−→ Sunday

insertion
−−−−−−−→ Sundays.

In practice, a consequence of assigning the value 3 to substitutions and 5 to transpositions is that the
edit distance calculated only uses insertions and deletions. Therefore, substitutions and transpositions
have a weight of 2 (a deletion followed by an insertion).

One of the limitations that this design has is that, for a specific string, a rotated version of it is assigned
many insertion and deletion operations, when with regards to the content they are basically the same (i.e.,
the content is the same, although the order of the substrings is different). Consider for example the strings
“abcd1234” and “1234abcd”.

Finally, the score that ssdeep produces is normalised in the range [0, 100], where 100 is associated to a
perfect match and 0 to a complete mismatch. If the two signatures have different block sizes, then ssdeep
automatically sets the score to 0 without performing further calculations.

In addition to the previous information, ssdeep defines the minimum length of the longest common
substring as 7. If the longest common substring length detected during the procedure is less than that
value, then ssdeep provides a score of 0.

The source code of ssdeep and implementations for both Windows and Linux are freely available [5],
so interested readers can inspect the code and test the application.

4. Design of SiSe

4.1. Key Elements for Improvement

Frank Breitinger and Harald Baier presented in 2012 a list of four general properties for similarity
preserving hashing functions [41], which they later extended to the following five characteristics [11]:

• Compression: The output must be several orders of magnitude smaller than the input for performance
and storage reasons.

• Ease of computation: The processes of generating the hash value for a given file and making
comparisons between files must be fast.



Mathematics 2020, 8, 503 6 of 37

• Similarity score: The comparison function must provide a number representing a matching percentage
value, so results for different files can be directly compared.

• Coverage: Every byte of the input data must be employed for calculating the similarity score.
• Obfuscation resistance: It must be difficult to obtain false negative and false positive results, even after

manipulating the input data.

Once the analysis of the characteristics of ssdeep was completed, we were able to identify a list of
additional practical features (which are closely related to ssdeep’s limitations) that, in our consideration,
any bytewise approximate matching function should provide (see Reference [16]):

• Generation of results consistent with the content of the compared files: This requirement implies the
existence of a simple and clear definition of the concept of similarity, and how to express that concept
as a number. In this context, this contribution uses a definition that states that similarity is the
degree to which the contents of two files look like or are the same. This definition encompasses the
concepts of resemblance and containment mentioned in Reference [3]. In order to measure it, a value
that represents the percentage of the larger file which is also contained in the smaller file is provided.

• Creation of signatures whose length is not affected by the input file size: In order to avoid problems when
storing the signatures of large files, the length of the signatures should be independent of the input
file size.

• Detection of content swapping: This concept refers to the situation in which some portion of the
document is taken from its original location and positioned in a different part, so from a graphical
point of view it could be seen as moving data blocks inside the document. For a file where content
swapping is the only operation performed, the result should be close to 100, as the content of the
original and the modified files is basically the same.

• Comparison of files of different sizes without limit: In some cases, it is necessary to compare files of
dissimilar size. If the only material available to the user are the signatures, then the files will be
compared only if those signatures have a common block size. Implementations that allow the
comparison of a signature file and a content file need to use the block size associated to the signature
when processing the data file, which does not always produce the desired results, specially when
the value of that block size is too big and does not generate a valid signature for the data file. This
situation can happen, for instance, when comparing files five or ten times larger, so implementations
need to provide a means for comparing such files.

As the reader may note, the previous requirements can be divided into two groups associated to
the procedures of signature generation and signature comparison. For the sake of clarity, we provide
below (see Table 1) the two differentiated sets of requirements as they will be referred to in the rest of the
document:

Table 1. Requirements that should be fulfilled by any approximate matching application.

Signature Generation Procedure Signature Comparison Procedure

(G1) Signature compression. (C1) Generation of a similarity score consistent with
(G2) Ease of computation. the content of the compared files.
(G3) Coverage. (C2) Ease of computation.
(G4) Independence regarding the input file size. (C3) Obfuscation resistance.

(C4) Content swapping detection.
(C5) Comparison of files of different sizes.

We have established a similarity definition that considers an important problem either not completely
taken into account or implemented in an unsatisfactory way by other functions: We believe that the
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similarity comparison should detect the inclusion of the content of a file in another file, but at the same
time it should also indicate in some way which parts of the larger file are contained in the smaller file. This
feature would be very useful in many contexts, such as plagiarism detection. For example, if we consider
three files extracted from the same book (one with the first chapter, another with the first ten chapters,
and the last one with the whole book), the comparison should work in the following way—the result of
comparing the first and the second file should be different from the one obtained when comparing the first
and the third file. This outcome is possible with our similarity definition, as it provides more granularity
about the results.

4.2. SiSe Signature Generation Procedure

As mentioned before, the SiSe signature generation procedure is based on that implemented in ssdeep.
For example, the generation of the initial block size in SiSe and in ssdeep are the same (i.e., the minimum
length of the leading signature is half the initially expected length), using the same versions of the Adler-32
and FNV (Fowler-Noll-Vo) functions, which were also selected by spamsum because their performance
was better compared to other cryptographic functions such as MD5 or the SHA family.

However, SiSe includes important modifications in order to be aligned with the requirements
described above. One of the more obvious differences between SiSe and ssdeep is the generation of
two characters per trigger point instead of only one, using the last 12 bits of the FNV output instead of
the last 6 bits. With this decision, the main drawback is that SiSe signatures require twice the number
of characters than ssdeep signatures for the same file and block size. Nevertheless, in order to keep a
low percentage of false positives, from our perspective it is essential to increase the number of characters
generated with the output of the FNV function.

Even though SiSe does not impose a limit on the maximum length for the signatures when generating
them, for performance reasons we have imposed in its implementation an arbitrary limit of 2560 double
characters when comparing signatures. That value has been selected so, in most signatures, it is not
exceeded, as the expected number of double characters in SiSe (and of single characters in ssdeep) is 64.

Another difference with respect to ssdeep is that SiSe computes three signatures in each execution
loop, with block sizes b, b/2 and b/4 (in Reference [12] there is a similar technique, but Chen and Wang
use b, 2b, 4b, and 8b instead, so our algorithm implements the opposite approach). The reason behind
this decision is that the experimental work described in Reference [9] (which employed 15,036 files of
several types totalling 3.84 gigabytes) demonstrated that 67.3% of the tested files needed the main loop of
the algorithm (i.e., the loop that scans the file at byte level and processes its full content) to be executed
once, while 26.2% needed to run the main loop twice, and the rest of the files needed at least three loop
executions. In the case of our design, it is possible to choose as leading and secondary signature the ones
related to block sizes b and b/2, or to block sizes b/2, and b/4, after any execution of the main loop. With
this, it is not necessary to perform any additional loop execution and, consequently, the running time will
decrease significantly in some cases. Figure 1 illustrates the difference between ssdeep and SiSe regarding
the number of main loop executions for each case.
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ssdeep SiSe

2.24.3

26.2

67.3

1 2 3 4 or more 1 2 3 or more

93.5

5.6 0.9

Figure 1. Percentage of files that need a different number of executions of the main loop.

While, in theory, calculating a third signature increments the complexity of the implementation and,
in principle, would increment the running time, the difference is negligible in practice, since our algorithm
checks if a certain byte is a trigger point when using block size b only if that byte is a trigger point for
both b/4 and b/2. Besides, our approach allows the completion of only one pass most of the times (more
precisely, in more than 90% of the cases) in comparison to ssdeep, where two or more passes are necessary
in almost one third of the cases.

In our implementation we have decided to use b and b/2 (or b/2 and b/4) instead of b and 2b as
the relationships between the block sizes of the leading and secondary signatures because, in this way,
the length of both signatures surpasses the minimum length (32 double characters). This fact becomes
important when using the secondary signature in a comparison: If, for the sake of precision, it is important
for the length of the leading signature not to have less than 32 double characters, then the secondary
signature should satisfy the same requirement. In our case, any signature selected for a comparison will
surpass the minimum length, improving consequently the accuracy of the comparisons. It is obvious that
the disadvantage of this design is that, in most files, the length of the secondary signature is larger than
the length of the leading signature (the smaller the block size, the higher the number of trigger points that
are likely to be detected), incrementing the size of the file containing both signatures.

Algorithm 1 presents the details of SiSe’s signature generation procedure [16]. The meaning of the
different functions included in the algorithm is as follows:

• length(element): If the argument is a file, the function returns the length in bytes of the file. If it is a
string, it returns the number of characters of the string.

• floor(value): It computes the largest integer not greater than value.
• subarray(array,start,end): It copies from array the subarray whose first byte is located at start

and whose last byte is located just before the byte indicated by the position end.
• updateWindow(byte): It updates the content of the sliding window taking into account the byte

passed as the argument of the function.
• Adler∗(input): It computes the value associated to the byte array input using ssdeep’s variant of the

Adler-32 function.
• FNV∗(input): It computes the value associated to the byte array input using ssdeep’s variant of the

FNV function.
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• codify(value): It generates two Base64 characters (one using the last group of 6 bits of value, and
the other one using the previous group of 6 bits).

• append(string,chars): It appends two characters to string.

Algorithm 1 SiSe signature generation.
1: inputSize← length(inputFile)
2: blockSize← 3
3: dec← 1
4: quotient← floor(inputSize/64 )
5: while (blockSize < quotient) do

6: blockSize← 2·blockSize
7: end while
8: sig1Len, sig2Len← 0
9: blockSize1← blockSize

10: blockSize2← blockSize1/2
11: blockSize4← blockSize2/2
12: while ((sig1Len < 64) and (sig2Len < 64)) do

13: index← 0
14: last1, last2, last4← -1
15: while (index < inputSize) do

16: currentByte← subArray(baInput,index,index+1)
17: baWindow← updateWindow(currentByte)
18: resultAdler← Adler∗(baWindow)
19: if ((resultAdler % blockSize4) = (blockSize4 - dec)) then

20: baBlock4← subArray(baInput,last4+1,index+1)
21: resultFNV← FNV∗(baBlock4)
22: pairChars← codify(resultFNV)
23: sig4← append(sig4, pairChars)
24: last4← index
25: if ((resultAdler % blockSize2) = (blockSize2 - dec)) then

26: baBlock2← subArray(baInput,last2+1,index+1)
27: resultFNV← FNV∗(baBlock2)
28: pairChars← codify(resultFNV)
29: sig2← append(sig2, pairChars)
30: last2← index
31: if ((resultAdler % blockSize1) = (blockSize1 - dec)) then

32: baBlock1← subArray(baInput,last1+1,index+1)
33: resultFNV← FNV∗(baBlock1)
34: pairChars← codify(resultFNV)
35: sig1← append(sig1, pairChars)
36: last1← index
37: end if
38: end if
39: end if
40: end while
41: sig1Len← length(sig1)
42: sig2Len← length(sig2)
43: if (sig1Len < 64) and (sig2Len < 64) then

44: blockSize1← blockSize1/4
45: blockSize2← blockSize1/2
46: blockSize4← blockSize2/2
47: else

48: if (sig1Len < 64) then

49: return sig1,sig2
50: else

51: return sig2,sig4
52: end if
53: end if
54: end while

4.3. SiSe Signature Comparison

In addition to the changes in the signature generation process explained above and the multi-threading
design, in this contribution we have implemented a new signature comparison algorithm which compares
two signature strings.



Mathematics 2020, 8, 503 10 of 37

Our work is related to other edit distance algorithms that allow moves (e.g., References [42–45]).
However, those contributions are mainly focused on the performance of such algorithms, and in many
cases they impose important restrictions during the comparison process. For example, in Reference [42]
the strings under comparison must be of equal size and must contain exactly the same characters;
Reference [43] makes his study assuming that each letter occurs at most k times in the input strings;
in Reference [44] the original position (p1) and the final position (p2) of the substring to be moved must
satisfy a limiting rule (namely, if l is the length of the substring, it is necessary that p2 is either smaller than
p1 or larger than p1 + l). Regarding Reference [45], it uses a different technique based on the embedding
of strings into a vector space and using a parsing tree.

Compared to the previously mentioned contributions, our algorithm manages text units comprised of
two characters, while the rest of related algorithms, to the best of our knowledge, manage single characters,
which allows us to improve the detection rate, as the probability of two pairs of characters being the same
is 1/4096 (the two Base64 characters of a pair use 12 bits) instead of 1/64, as it is the case when using only
one Base64 character (and the 6 bits associated to it).

Algorithm 2 shows all the calculations performed to calculate numerically the similarity of the strings
sig1 (with length sig1Len) and sig2 (with length sig2Len), where the first step consists in creating a
two-dimensional array of size (sig1Len + 1) × (sig2Len + 1). That array, called arrComp, initially contains
the value 0 in all of its positions, but is updated whenever a double character of the first string matches
a double character of the second string (only if both double characters are located in an even position,
considering that the first position of a string is 0). The arrays identified as arrx and array mark if a
character has already been taken into account during the computation of the score (a value 0 means that
the character has not be considered for the score up to that point, whilst a value 1 means that the character
belongs to a substring included in both input strings that has already been used during the calculation of
the score).
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Algorithm 2 SiSe signature comparison.
1: for all i such that 1 ≤ i ≤ sig1Len do

2: for all j such that 1 ≤ j ≤ sig2Len do

3: if sig1[i− 1] = sig2[j− 1] then

4: if (i%2 = 1) and (j%2 = 1) then

5: if sig1[i]=sig2[j] then

6: arrComp[i][j] = arrComp[i− 1][j− 1] + 1
7: end if
8: else

9: if (i%2 = 0) and (j%2 = 0) then

10: if arrComp[i− 1][j− 1] > 0 then

11: arrComp[i][j] = arrComp[i− 1][j− 1] + 1
12: if i <sig1Len and j <sig2Len then

13: if sig1[i] 6= sig1[j] then

14: list.add((arrComp[i][j],i,j))
15: end if
16: else

17: list.add((arrComp[i][j],i,j))
18: end if
19: end if
20: end if
21: end if
22: end if
23: end for
24: end for
25: index1← 0, index2← 0
26: for all item in list do

27: if arrx[item.posRow]= 0 and arry[item.posCol]= 0 then

28: points = points + item.val
29: for all index1 such that (item.posRow - item.val + 1) ≤ index1 ≤ item.posRow do

30: for all index2 such that (item.posCol - item.val + 1) ≤ index2 ≤ item.posCol do

31: if ((arrx[index1]= 1) or (arry[index1]= 1)) then

32: points = points - 1
33: end if
34: arrx[index1] = 1
35: arry[index2] = 1
36: end for
37: end for
38: else

39: dec = item.val;
40: for all index1 such that item.posRow ≤ index1 ≥ item.posRow - item.val+1 do

41: for all index2 such that item.posCol ≤ index2 ≥ item.posCol - item.val+1 do

42: if arrx[index1]= 1 or arry[index2]= 1 then

43: dec← dec - 1
44: else

45: break
46: end if
47: end for
48: end for
49: if reduced>0 then

50: points = points + dec
51: for all index1 such that (item.posRow-item.val+1) ≤ index1 ≤ (item.posRow-removed) do

52: for all index2 such that (item.posCol-item.val+1) ≤ index2← (item.posCol-(item.val-dec)) do

53: if arrx[index1]= 1 or arry[index2]= 1 then

54: points← points - 1
55: end if
56: arrx[index1]← 1
57: arry[index2]← 1
58: end for
59: end for
60: end if
61: end if
62: end for
63: return (points*100)/max(sig1,sig2)
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Table 2 shows an example of such an array when comparing the strings A1B2C3D4F8 and
1A1BC3D4F7A1. As it can be observed, the substring 1B is not credited any point because in one string it
starts at an odd position while in the other string it starts in an even position, so they do not produce
a match.

Table 2. Comparison array example.

A 1 B 2 C 3 D 4 F 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 1 0 0 0 0 0

3 0 0 0 0 0 0 2 0 0 0 0

D 0 0 0 0 0 0 0 3 0 0 0

4 0 0 0 0 0 0 0 0 4 0 0

F 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0

A 0 1 0 0 0 0 0 0 0 0 0

1 0 0 2 0 0 0 0 0 0 0 0

Once all the characters are compared and an array such as the one shown in Table 2 is completed, a
list is created with elements that include three values: The highest value assigned to a series (displayed in
bold in the table), and the row and column associated to that value. In the example, two elements would be
added to the list, (4, 8, 8) and (2, 12, 2). Those elements, representing all the sequences of double characters
(located at valid positions) are then processed by the second part of the algorithm in order to increase the
number of points assigned to the comparison and remove those substrings from the comparison, so they
are not taken into account more than once.

In the example shown, the final score would be 50, as 50% of string 1A1BC3D4F7A1 can be found in
string A1B2C3D4F8 (more specifically, the double characters A1, C3, and D4 are shared by both strings, while
the two strings contain three additional double characters that are not common).

5. SiSe Implementation

5.1. Interface

We have implemented our design of SiSe as a C++ multi-threaded command-line application that
uses the features of the C++17 standard [46] and the OpenMP library [47]. The application implements a
dual input command format: One adapted to the FRASH tests, and a proprietary one. Regarding the input
format compatible with FRASH, SiSe can be used without modifiers with one or several files separated
by spaces. This indicates SiSe that it must treat those files as content data and generate their signatures
individually. In turn, if modifier -x is used along with the name of a file, it indicates the application that
the file contains multiple signatures and that it must compare all signatures against the rest. Finally, if
modifier -r is employed together with the path of a directory, SiSe will compute the signature of all the
files contained in that folder.
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In comparison, the proprietary input command format used by SiSe for creating a new signature is
sise -i input_file, which allows the following additional optional elements:

-o: Output file name.
-b: Block size (if not indicated, the block size is computed by the application as in ssdeep).
-d: Decremental value, that is, the amount to be decremented to the block size in the trigger point
computations (the default value is 1).
-t: Number of threads used by the application (if not indicated, the value employed is decided by SiSe
based on the size of the input file).

Independently of the input command format used, the signature procedure creates a text string
containing a header and two signatures (the leading and the secondary signatures). The header of the
initial version is SiSe-1.0--7:1--blocksize:hash,filename, where the elements 7 and 1 are replaced
by other numbers when non-default values selected by the user are employed for the window size and the
decremental value, respectively.

The first signature that follows the header is the leading signature. Both signatures start with the
block size and the value used in the modulus comparison to identify the trigger points (i.e., the block size
minus the decremental value), the last one located between parenthesis and followed by a colon. The
next item that appears is the actual signature string, corresponding to the previously stated block size. A
double colon :: separates both signatures. Finally, the complete path of the file that has been processed
(written between quotation marks) appears separated from the previous information by a comma.

In order to illustrate the signature generation process, Table 3 shows the output provided by ssdeep
and SiSe when processing the plain text file containing Robert Louis Stevenson’s Treasure Island [48]. As it
can be noted, the character that appears in the second position of each pair in the secondary signature of
SiSe (the one with a block size of 3072) matches the corresponding character of the leading signature of
ssdeep. This fact happens as the block size, windows size, and decremental value is the same for those two
signatures. The coincidence in the series of characters ends at the 63th character of the ssdeep signature,
as at that point ssdeep computes its final character using the rest of the document, independently of the
length of that remaining part and the number of trigger points included in it. In contrast, SiSe continues
computing all the characters derived from the presence of additional trigger points.

Table 3. ssdeep and SiSe signature examples.

> ssdeep pg27780.txt

ssdeep,1.1--blocksize:hash:hash,filename
3072:7ElbU+TnglXXzpfu2/8Fbo0ANtD3xKdeS/GVcO/bLe/sVcdJqZ/7y0O3FFh1g+Mp:27YpKwhKdeoD/JVjQT1J
+rOSfitp4pc7,"/media/victor/USB/pg27780.txt"

> sise pg27780.txt

SiSe-1.0--7:1--blocksize(modvalue):hash,filename
6144(6143):k2C7lYMp6KJw/hiKodceZoVDD//JfVrjOQVTT1GJA+Ir8O+SrfGiEtMpq4UpucU7::3072(3071):Q7
BEUlUbaUe+1TInKgvluXnXkzMpDfLu12J/j8ZFfbwou0YAxNXtXDU3NxiKodceLSf/gGxVCcvOi/PbSLDeD/EsZVuc
zd+Jyq/ZC/M7fyH0aOG3JFaF1hc1Kgh+VMZVbrXJR/HrT1GJA+xYR6cvz7a58OIfvpEBjAVAA+x3Tu0B+gTTWOEtn3
pfQ2wLkqx9lFhovSu4uc1ePk,"/media/victor/USB/pg27780.txt"

The proprietary format of the command for comparing signatures and/or files is sise -c
input_file_1 input_file_2, which allows these combinations:

• Two signature files: The comparison between signatures can be done only if they have at least one
block size value in common. Additionally, the decremental value and the window size must be equal
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in both signature files. If the leading signatures use the same block size value, and the secondary
signatures also employ the same block size value (but different from the block size of the leading
signatures) at the same time, SiSe is able to apply the edit distance algorithm (see Algorithm 2 in
Section 4.3) in both cases, and returns the highest score calculated.

• A signature file and a data file: The block size, decremental value, and window size are obtained from
the signature file and used in the processing of the signature related to the data file.

• Two data files: In a first step, the leading and secondary signatures of both files are independently
computed using the default parameters established for the block size, the decremental value, and the
window size. Then, SiSe identifies the smallest block size value of the two leading signatures and
processes again the signature of the other file with the new block size value.

5.2. Multi-Thread Design

The C++ implementation of SiSe uses the OpenMP library [47] both during the signature creation
and the signature comparison procedures. Multi-threading is employed in the comparison phase when
comparing digests using the -x option, that is, when requesting SiSe to compare all the signatures included
in a file with the rest of signatures of that file. In that scenario, SiSe distributes the work between a number
of threads that equals the number of logical cores of the processor, where the number of logical cores is the
number of physical cores multiplied by the number of threads that can run on each core through the use
of hyperthreading.

Multi-threading is also used during the signature generation process in two different ways. For any
file larger than 1 megabyte, the strategy consists in dividing the file into several parts so each thread
is assigned a portion of the file. Given the nature of the operations that each thread must perform,
the multi-thread design tries to minimize the amount of bytes that are processed twice. Nevertheless,
the double processing of some portions of the file cannot be avoided, as it will become clear with the
description included below and Figure 2. Besides, when a command requests to process more than one
file, SiSe creates a list of files whose size is less than 1 megabyte and assigns one thread per file up to the
thread limit.

Start point of thread #1 Start point of thread #2 Start point of thread #3 Start point of thread #4

Theoretical end point  
of thread #1

Theoretical end point  
of thread #2

Theoretical end point  
of thread #3

Theoretical (and practical)
end point of thread #4

Processed by thread #1

Processed by thread #2

Processed by thread #3

Processed by thread #4

Trigger points 

Overlap Overlap Overlap

Figure 2. Representation of the multi-thread design.

Coming back to the multi-threading scheme for a file larger than 1 megabyte, when using n threads
that file is divided into n parts, so each thread starts processing bytes at a different offset inside the file. If
the working thread is thread #1, the first triggered point found by the thread provokes the computation
of the first pair of characters of the signature. However, if the working thread is not thread #1, when the
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thread detects the first trigger point it adds no pair of characters to the signature, as at that point the thread
lacks the knowledge of where the previous trigger point was located. From that moment on, all the threads
work as expected and, whenever they find a trigger point, they compute the corresponding two-character
element of the signature. Threads continue to work in that way and, except the last thread (which finishes
its execution when it reaches the end of the file, computing at that moment the pair of characters associated
to the end of the signature), they only stop when finding the first trigger point located after the byte that
marks the theoretical end point of their respective file partitions.

This scheme brings as a consequence a certain overlapping of parts of the file processed both by
threads i− 1 and i, where the overlapped portion is read by thread i− 1 at the end of its execution and by
thread i at the beginning of its execution. The extent of the overlap depends on the content of the file, its
size, and the number of threads. Figure 2 provides an example that illustrates the multi-thread scheme
when four threads are used.

As the detection of trigger points depends on the value of the byte being processed and the value of
the previous 7 bytes, before processing the first byte each thread fills in the sliding window array with the
proper 7 bytes, so no false trigger points appear and thus the signatures are guaranteed to be the same
independently of the number of threads used during the process.

Regarding the optimal number of threads to be employed by the application, after several tests it was
decided to use one thread with files whose size is less than 1 megabyte and a number of threads that equal
the number of logical cores in the rest of cases. The reason for doing this is that, for small files, the cost of
setting up the threads and aggregating the results provided by them does not compensate the benefit of a
reduced workload per thread. As for the buffer size used when reading the files, during the tests a buffer
of one megabyte proved to be the best option.

6. Ad-Hoc Tests

This section shows the results of the comparisons performed with SiSe, ssdeep, sdhash, and LZJD in
different scenarios designed by ourselves to verify the features associated to the characteristics described
in Section 4.1.

We have classified the tests in four categories: Similarity tests, dissimilarity tests, special signatures
tests, and suitability tests. For the first two groups, we have tested plain text files, Word documents, and
BMP images. The tests with special signatures are intended to check the behaviour of the four algorithms in
some special cases. The suitability tests try to determine the practicability of the applications in real-world
scenarios by measuring the performance and signature size using files whose length span from less than 1
megabyte to several gigabytes.

As mentioned in Section 4, after performing several tests modifying the values of the block sizes,
window sizes, and decremental values, we concluded that the results did not show appreciable differences.
For this reason, we decided to use the default parameters (sliding window of 7 bytes, block size computed
by the algorithm, and decremental value equal to 1) in all the tests that follow. Moreover, as they are the
same values that ssdeep use, it is easier to derive conclusions from the results.

It is important to notice that, in all the tables related to tests in which two files are employed, the
identifier linked to the row represents the first input argument and the identifier linked to the column
represents the second input argument.

Tables associated to SiSe include four values in each cell. Those values are obtained when comparing
two hash files, a content file and a hash file (in that order), a hash file and a content file (in that order), and
two content files, respectively.

The values associated with the tests with ssdeep can be obtained either by comparing two signature
files by means of the command ssdeep -ak sigfile1 sigfile2 or by comparing a signature file and a
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content file (in that order) using the command ssdeep -am sigfile contentfile. As in all the tests both
methods provide the same numerical value, in the tables related to ssdeep we have included each value
once, even though all the tests have been performed separately with both commands.

Results can be obtained with sdhash and LZJD through two procedures. In the first one, a signature
file with the hashes of all the files has been generated with the command sdhash * > sigfile.sdbf and,
as a second step, that file has been used as input for the command sdhash -c sigfile.sdbf that compares
all the hashes included in the file. In the second case, the results have been directly generated by using the
command sdhash -g *. When using LZJD, the command sdhash must be replaced with the command
LZJD.jar, as the author of LZJD recommends using the Java version of its algorithm [49]. In the tables
with the sdhash results only one value appears in each cell, as the result obtained with the two procedures
is exactly the same. In comparison, LZJD provides different values when using the two procedures with
the same files, so in that case we have preferred to include both values in the corresponding table.

It is interesting to note that, while the ssdeep matrices are always symmetric, that is not always the
case with the matrices related to SiSe. The reason for that fact is that the second score of each cell represents
a test where a signature file (pertaining to the file identified by the row of the table) is compared against
the content of a data file (whose identifier is at the top of the column that contains the cell with the score).
According to its predefined behaviour, SiSe imposes the leading block size of the file associated to the
row when processing the signature of the file associated to the column. If the leading block size of the file
associated to the row is smaller than the theoretical leading block size of the file associated to the column,
a signature (which theoretically is longer than the original signature that would have been generated
with SiSe) is produced by the application. On the other hand, when the leading block size of the file
associated to the row is larger than the theoretical leading block size of the file associated to the column,
it could happen that, when that block size is forced on the file associated to the column, no signature of
the minimum length could be generated. In this case, SiSe is not able to perform the comparison. In the
rest of the cases there might be small differences in the outcome produced by SiSe for the second test (i.e.,
the second number displayed in every cell) in both comparisons (i.e., file A compared to file B, and file B
compared to file A), depending on the leading block size used in each case. The same situation appears in
the tests associated to the third score. However, when using two signature files or two data files (i.e., the
first and fourth scenarios) the results are always symmetric for each comparison.

As a final comment, for better legibility in the tables, we have discarded the results related to the
comparison of any file with itself.

6.1. Similarity Tests

6.1.1. Plain Text Documents

In this test, plain text files with the first 20 chapters of Miguel de Cervantes’ Don Quijote, in the
version offered by The Project Gutenberg [50], have been used. These files are the following: Q01.txt
(10,887 bytes, Quijote’s chapter 1), Q02.txt (23,877 bytes, chapters 1, 2), Q03.txt (37,342 bytes, chapters
1–3), Q04.txt (51,374 bytes, chapters 1–4), Q05.txt (60,526 bytes, chapters 1–5), Q10.txt (125,217 bytes,
chapters 1–10), Q15.txt (204,198 bytes, chapters 1–15), and Q20.txt (305,527 bytes, chapters 1–20). Table 4
shows the percentage of the smaller file as a part of the larger file using the byte size as the comparison
value, as in this test the smaller files are totally contained in the larger ones.
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Table 4. Percentage of the larger file representing the smaller file with content in plain text format.

Q01 Q02 Q03 Q04 Q05 Q10 Q15 Q20

Q01 - 45.6% 29.2% 21.2% 18.0% 8.7% 5.3% 3.6%

Q02 45.6% - 63.9% 46.5% 39.4% 19.1% 11.7% 7.8%

Q03 29.2% 63.9% - 72.7% 61.7% 29.8% 18.3% 12.2%

Q04 21.2% 46.5% 72.7% - 84.9% 41.0% 25.2% 16.8%

Q05 18.0% 39.4% 61.7% 84.9% - 48.3% 29.6% 19.8%

Q10 8.7% 19.1% 29.8% 41.0% 48.3% - 61.3% 41.0%

Q15 5.3% 11.7% 18.3% 25.2% 26.6% 61.3% - 66.8%

Q20 3.6% 7.8% 12.2% 16.8% 19.8% 41.0% 66.8% -

Tables 5–9 present the outcomes of the tests using SiSe, ssdeep, sdhash, and LZJD. As it can be seen,
SiSe is the application that offers results closer to the percentages included in Table 4, providing values
better adapted to the similarity definition presented in Section 4.1. In addition to that, it is important to
note that SiSe provides results (with two of its four operation modes) in several cases where ssdeep and
LZJD return a value of 0, as for example in the comparison between Q01.txt and Q04.txt, the comparison
between Q02.txt and Q10.txt or the comparison between Q05.txt and Q15.txt. The values generated
by sdhash in those cases are 95, 99, and 100, respectively, which inform that the smaller file is definitely
included in the larger file, but do not provide details about how much content of the larger file is replicated
in the smaller file.

Table 5. Test results for similar plain text files with SiSe, part 1 (hash vs. hash/file vs. hash/hash vs. file/file
vs. file).

Q01 Q02 Q03 Q04

Q01 - 40/42/43/43 0/26/28/28 0/20/21/21

Q02 40/43/42/43 - 61/61/63/63 46/46/47/47

Q03 0/28/26/28 61/63/61/63 - 74/74/74/74

Q04 0/21/20/21 46/47/46/47 74/74/74/74 -

Q05 0/18/17/18 40/40/40/40 64/64/64/64 85/85/86/86

Q10 0/8/0/8 0/22/20/22 32/35/32/35 44/46/44/47

Q15 0/5/0/5 0/14/0/14 0/23/0/23 0/30/0/31

Q20 0/4/0/4 0/9/0/9 0/15/0/15 0/20/0/20
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Table 6. Test results for similar plain text files with SiSe, part 2 (hash vs. hash/file vs. hash/hash vs. file/file
vs. file).

Q05 Q10 Q15 Q20

Q01 0/17/18/18 0/0/8/8 0/0/5/5 0/0/4/4

Q02 40/40/40/40 0/20/22/22 0/0/14/14 0/0/9/9

Q03 64/64/64/64 32/32/35/35 0/0/23/23 0/0/15/15

Q04 85/86/85/86 44/44/46/47 0/0/30/31 0/0/20/20

Q05 - 54/54/54/54 0/0/36/36 0/0/24/24

Q10 54/54/54/54 - 56/56/66/66 0/0/44/44

Q15 0/36/0/36 56/66/56/66 - 58/58/62/62

Q20 0/24/0/24 0/44/0/44 58/62/58/62 -

Table 7. Test results for similar plain text files with ssdeep.

Q01 Q02 Q03 Q04 Q05 Q10 Q15 Q20

Q01 - 66 0 0 0 0 0 0

Q02 66 - 75 66 66 0 0 0

Q03 0 75 - 90 90 47 0 0

Q04 0 66 90 - 99 55 0 0

Q05 0 66 90 99 - 65 0 0

Q10 0 0 47 55 65 - 60 41

Q15 0 0 0 0 0 60 - 77

Q20 0 0 0 0 0 41 77 -

Table 8. Test results for similar plain text files with sdhash.

Q01 Q02 Q03 Q04 Q05 Q10 Q15 Q20

Q01 - 95 95 95 95 95 95 95

Q02 95 - 99 99 99 99 99 99

Q03 95 99 - 100 100 100 100 100

Q04 95 99 100 - 100 100 100 100

Q05 95 99 100 100 - 100 100 100

Q10 95 99 100 100 100 - 100 100

Q15 95 99 100 100 100 100 - 100

Q20 95 99 100 100 100 100 100 -
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Table 9. Test results for similar plain text files with LZJD (signature comparison/file comparison).

Q01 Q02 Q03 Q04 Q05 Q10 Q15 Q20

Q01 - 25/35 20/22 0/0 0/0 0/0 0/0 0/0

Q02 25/35 - 59/54 45/38 37/31 0/0 0/0 0/0

Q03 20/22 59/54 - 66/63 53/50 20/21 0/0 0/0

Q04 0/0 45/38 66/63 - 77/77 25/28 0/0 0/0

Q05 0/0 37/31 53/50 77/77 - 34/34 0/0 0/0

Q10 0/0 0/0 20/21 25/25 34/34 - 46/49 29/29

Q15 0/0 0/0 0/0 0/0 0/0 46/49 - 53/53

Q20 0/0 0/0 0/0 0/0 0/0 29/29 53/53 -

There are two situations in which SiSe does not provide a comparison result. The first one happens
when comparing two files with incompatible signatures. The second situation appears when comparing a
small content file with the hash of a large file, as in that case the block size used in the comparison is too
large for generating a valid signature in the smaller file. When the two other situations appear (comparing
two content files or a large content file with the hash of a small file), valid results are always produced.

6.1.2. Word Documents

In this second test, the same book as in the previous test was used, although the chapters of Don
Quijote have been saved as Microsoft Word 2016 using the identifiers Q01.docx (17,637 bytes), Q02.docx
(24,140 bytes), Q03.docx (30,596 bytes), Q04.docx (37,422 bytes), Q05.docx (41,895 bytes), Q10.docx (68,691
bytes), Q15.docx (105,228 bytes), and Q20.docx (150,969 bytes).

Table 10 shows the percentage of the smaller file as a part of the larger file using the byte size as
the comparison value, as in this test the smaller files are totally contained in the larger ones. The values
included in this table are slightly higher than the values presented in Table 4 due to the internal format
used by Microsoft Word.

Table 10. Percentage of the larger file representing the smaller file with content in Microsoft Word format.

Q01 Q02 Q03 Q04 Q05 Q10 Q15 Q20

Q01 - 73.1% 57.6% 47.1% 42.1% 25.7% 16.8% 11.7%

Q02 73.1% - 78.9% 64.5% 57.6% 35.1% 23.0% 16.0%

Q03 57.6% 78.9% - 81.8% 73.0% 44.5% 29.1% 20.3%

Q04 47.1% 64.5% 81.8% - 89.3% 54.5% 35.6% 24.8%

Q05 42.1% 57.6% 73.0% 89.3% - 61.0% 39.8% 27.8%

Q10 25.7% 35.1% 44.5% 54.5% 61.0% - 65.3% 45.5%

Q15 16.8% 23.0% 29.1% 35.6% 39.8% 65.3% - 69.7%

Q20 11.7% 16.0% 20.3% 24.8% 27.8% 45.5% 69.7% -

Tables 11–15 present the results obtained with SiSe, ssdeep, sdhash, and LZJD, respectively. With
the information included in those tables, it is obvious that SiSe can compare more files than ssdeep. The
values provided by SiSe in this test are lower than the values generated in the previous test, which is once
again due to the internal structure of Word documents and the metadata that is contained in each file.
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In the case of sdhash, it can be said that the values shown in Table 14 do not reflect the trend that
can be visualised with SiSe where, for a specific file (e.g., Q01.docx) the comparison score decreases as the
other file used in the comparison contains a larger portion of the book (Q02.docx, Q05.docx, Q10.docx,
etc.), as the content of the initial file is diluted in the larger files.

Finally, it is worth mentioning that LZJD fails to produce results above zero in many cases.

Table 11. Test results for similar Word documents with SiSe, part 1 (hash vs. hash/file vs. hash/hash vs.
file/file vs. file).

Q01 Q02 Q03 Q04

Q01 - 32/32/32/32 29/29/30/30 23/23/23/23

Q02 32/32/32/32 - 32/32/32/32 24/24/24/24

Q03 29/30/29/30 32/32/32/32 - 52/53/52/53

Q04 23/23/23/23 24/24/24/24 52/52/53/53 -

Q05 21/21/21/21 22/22/22/22 47/47/48/48 49/49/49/49

Q10 0/14/0/14 0/15/12/15 11/15/11/15 11/15/11/15

Q15 0/9/0/9 0/10/8/10 6/9/6/10 6/10/6/10

Q20 0/7/0/7 0/8/0/8 0/7/0/7 0/7/0/7

Table 12. Test results for similar Word documents with SiSe, part 2 (hash vs. hash/file vs. hash/hash vs.
file/file vs. file).

Q05 Q10 Q15 Q20

Q01 21/21/21/21 0/0/14/14 00/9/9 0/0/7/7

Q02 22/22/22/22 0/12/15/15 0/8/10/10 0/0/8/8

Q03 47/48/47/48 11/11/15/15 6/6/9/10 0/0/7/7

Q04 49/49/49/49 11/11/15/15 6/6/10/10 0/0/7/7

Q05 - 11/11/16/16 6/6/9/9 0/0/7/7

Q10 11/16/11/16 - 45/45/45/45 27/27/32/32

Q15 6/9/6/9 45/45/45/45 - 65/65/65/65

Q20 0/7/0/7 27/32/27/32 65/65/65/65 -
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Table 13. Test results for similar Word documents with ssdeep.

Q01 Q02 Q03 Q04 Q05 Q10 Q15 Q20

Q01 - 40 0 0 0 0 0 0

Q02 40 - 0 0 0 0 0 0

Q03 0 0 - 63 49 0 0 0

Q04 0 0 63 - 50 0 0 0

Q05 0 0 49 50 - 0 0 0

Q10 0 0 0 0 0 - 52 32

Q15 0 0 0 0 0 52 - 68

Q20 0 0 0 0 0 32 68 -

Table 14. Test results for similar Word documents with sdhash.

Q01 Q02 Q03 Q04 Q05 Q10 Q15 Q20

Q01 - 44 36 34 31 35 33 32

Q02 44 - 38 37 22 36 37 36

Q03 36 38 - 71 66 18 21 19

Q04 34 37 71 - 51 17 15 16

Q05 31 22 66 51 - 13 13 13

Q10 35 36 18 17 13 - 77 76

Q15 33 37 21 15 13 77 - 93

Q20 32 36 19 16 13 76 93 -

Table 15. Test results for similar Word documents with LZJD (signature comparison/file comparison).

Q01 Q02 Q03 Q04 Q05 Q10 Q15 Q20

Q01 - 0/0 0/0 0/0 0/0 0/0 0/0 0/0

Q02 0/0 - 0/0 0/0 0/0 0/0 0/0 0/0

Q03 0/0 0/0 - 48/43 32/35 0/0 0/0 0/0

Q04 0/0 0/0 48/43 - 34/37 0/0 0/0 0/0

Q05 0/0 0/0 32/35 34/37 - 0/0 0/0 0/0

Q10 0/0 0/0 0/0 0/0 0/0 - 41/33 26/25

Q15 0/0 0/0 0/0 0/0 0/0 41/33 - 45/48

Q20 0/0 0/0 0/0 0/0 0/0 26/25 45/48 -

6.1.3. BMP Images

This test uses the three images shown in Figure 3. The first image is the Lenna’s classic greyscale test
image [51]. For the second and third images, although the image is the same, we have rearranged half of it
horizontally and vertically, respectively. The three images are bitmaps of the same resolution, therefore
their size is the same (786,486 bytes). Readers should note that, in those individual BMP images, each
pixel is represented by 24 bits, and that the pixel content is stored sequentially in the file. Pixels are read
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processing rows from top to bottom and, for any given row, from left to right (which means that the first
pixel stored in the file is the one located at the upper left corner of the image, and the last one is the pixel
located at the bottom right corner of the file).

Figure 3. BMP test images.

The results obtained with the four applications are displayed in Tables 16–19, where we have used
the identifiers BMP 1, BMP 2, and BMP 3 for the three images.

Table 16. Test results for similar BMP images with SiSe (hash vs. hash/file vs. hash/hash vs. file/file
vs. file).

BMP 1 BMP 2 BMP 3

BMP 1 100/100/100/100 98/98/98/98 20/20/20/20

BMP 2 98/98/98/98 100/100/100/100 20/20/20/20

BMP 3 20/20/20/20 20/20/20/20 100/100/100/100/

Table 17. Test results for similar BMP images with ssdeep.

BMP 1 BMP 2 BMP 3

BMP 1 100/100 52/52 0/0

BMP 2 52/52 100/100 0/0

BMP 3 0/0 0/0 100/100

Table 18. Test results for similar BMP images with sdhash.

BMP 1 BMP 2 BMP 3

BMP 1 - 69/69 75/75

BMP 2 69/69 - 50/50

BMP 3 75/75 50/50 -
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Table 19. Test results for similar BMP images with LZJD (signature comparison/file comparison).

BMP 1 BMP 2 BMP 3

BMP 1 - 37/44 43/50

BMP 2 37/44 - 36/43

BMP 3 43/50 36/43 -

Using the results obtained, we can conclude that ssdeep is not able to match the image vertically
rearranged with the two other images. In contrast, SiSe obtains results in both cases. Additionally, SiSe
assigns a larger similarity percentage when comparing the first and second images (98%) than ssdeep
(52%) which, in our opinion, is closer to reality given our similarity definition and the content of the files.
On the other hand, the results obtained when processing the third image with sdhash are better adapted
to our similarity definition, but sdhash fails to identify the first two images as having basically the same
content. Regarding LZJD, its results follow the trend of sdhash but with scores significantly lower that
those of sdhash. The reason for SiSe providing a lower result when comparing the third file to the other
ones than when comparing the second file to the third one, is that due to the way a BMP file stores its
pixels, a lot more trigger points are shared by the first and second images.

6.2. Dissimilarity Tests

The aim of this group of tests is to detect undesirable false positives by comparing files of the same
format but with different content. Given the results obtained, no file is interpreted as strongly related to the
other files included in the same test, as the maximum value obtained through those tests is 10 (produced
by sdhash).

6.2.1. Plain Text Documents

The plan text files used in this test contain the following books as offered by The Project Gutenberg: H.
G. Wells’ The Time Machine [52] (201,875 bytes), Miguel de Cervantes’ Don Quijote [50] (2,198,927 bytes),
Robert Louis Stevenson’s Treasure Island [48] (397,415 bytes), and Jules Verne’s Voyage au Centre de la
Terre [53] (460,559 bytes).

In this test ssdeep and LZJD did not provide any positive results when comparing the different files.
The results obtained with SiSe and sdhash are offered in Tables 20 and 21.

Table 20. Test results for dissimilar plain text files with SiSe (hash vs. hash/file vs. hash/hash vs. file/file
vs. file).

Machine Quijote Treasure Voyage

Machine - 0/0/2/2 5/5/5/5 1/1/4/4

Quijote 0/2/0/2 - 0/3/0/3 0/3/0/3

Treasure 5/5/5/5 0/0/3/3 - 3/3/3/3

Voyage 1/4/1/4 0/0/3/3 3/3/3/3 -
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Table 21. Test results for dissimilar plain text files with sdhash.

Machine Quijote Treasure Voyage

Machine - 10/10 9/9 7/7

Quijote 10/10 - 5/5 5/5

Treasure 9/9 5/5 - 5/5

Voyage 7/7 5/5 5/5 -

SiSe obtains a maximum value for dissimilar files of 5, which implies that in order to discard false
positives a threshold could be established. In the case of ssdeep, it returns a value of 0 for every comparison
without processing its edit distance algorithm. The reason for that is that the corresponding signatures do
not have a substring with at least 7 characters common, and hence it directly returns a value of 0. The
comparisons performed by sdhash show values that are slightly higher than the ones provided by SiSe,
but without a significant difference.

6.2.2. Word Documents

For this test, new Microsoft Word 2016 (Microsoft Corporation, Redmond, WA, USA) files have been
created with the same content of the books used in the previous test. The size in bytes of each file is 118,169
(Machine.docx), 1,918,754 (Quijote.docx), 372,941 (Treasure.docx), and 263,316 (Voyage.docx).

While ssdeep and LZJD did not provide any positive results when comparing the different files, SiSe
and sdhash returned the residual values included in Tables 22 and 23.

Table 22. Test results for dissimilar Word files with SiSe (hash vs. hash/file vs. hash/hash vs. file/file
vs. file).

Machine Quijote Treasure Voyage

Machine - 0/0/1/1 2/2/2/2 1/1/2/2

Quijote 0/1/0/1 - 0/2/0/2 0/2/0/2

Treasure 2/2/2/2 0/0/2/2 - 1/1/1/1

Voyage 1/2/1/2 0/0/2/2 1/1/1/1 -

Table 23. Test results for dissimilar Word files with sdhash.

Machine Quijote Treasure Voyage

Machine - 2/2 2/2 5/5

Quijote 2/2 - 3/3 2/2

Treasure 2/2 3/3 - 1/1

Voyage 5/5 2/2 1/1 -

As in the case of dissimilar plaint text files, the values returned by both SiSe and sdhash are very low
and could be avoided by establishing a small threshold.

6.2.3. BMP Images

In this test, three well-known test colour images obtained from Reference [54] have been used. The
first one is Lenna’s portrait (lenna.bmp), the second one is the photograph of a combat jet (airplane.bmp),
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and the third one displays several vegetables (pepper.bmp) as it can be seen in Figure 4. The resolution of
the three files is 512× 512 pixels, and they use 24 bits per pixel, so their size is 786,486 bytes.

Figure 4. Color BMP test images.

While ssdeep and LZJD did not provide any positive results, sdhash returned a value of 1 when
comparing pepper.bmp to the other two files and SiSe also returned a value of 1, but only when comparing
lenna.bmp and pepper.bmp. Thus, the results are aligned with the expected behaviour, as the content of
those files is clearly different.

6.3. Special Signatures

The aim of this test is to verify the behaviour of SiSe when it has to process some special signatures
which represent cases that cannot be directly translated to regular input data files. Even so, we believe
that it would be worthwhile to test SiSe and ssdeep in this scenario, as it represents different degrees of
content modification. This test was not carried out with sdhash and LZJD as it was impossible to verify
if the forged signatures truly reflected the nature of the tests, since their signature generation process is
completely different.

Once again, it is important to point out that these special signatures do not represent actual files,
instead they have been developed ad-hoc taking into account that the minimum length had to be 32
characters so they could be used with ssdeep. The special signatures for ssdeep are as follows:

S01: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
S02: ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ
S03: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
S04: 12345678901234567890123456ABCDEFGHIJKLMNOPQRSTUVWXYZ
S05: BADCFEHGJILKNMPORQTSVUXWZYbadcfehgjilknmporqtsvuxwzy
S06: CDABGHEFKLIJOPMNSTQRWXUVabYZefcdijghmnklqropuvstyzwx
S07: EFGHABCDMNOPIJKLUVWXQRSTcdefYZabklmnghijstuvopqrwxyz
S08: IJKLMNOPABCDEFGHYZabcdefQRSTUVWXopqrstuvghijklmnwxyz
S09: QRSTUVWXYZabcdefABCDEFGHIJKLMNOPwxyzghijklmnopqrstuv
S10: ghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZabcdef

The base element for this set is the first signature, S01. The second signature, S02, duplicates the first
half of S01 in the second half. Signature S03 swaps the two blocks of S01. Additionally to this change,
signature S04 replaces the first half of S03 with a string of digits. The remaining signatures, from S05 to
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S10, have been created taking S01 and then applying transpositions of blocks whose sizes in characters are
is 1, 2, 4, 8, 16, and 32, respectively.

Bearing in mind that SiSe signatures use two characters per trigger point, the special signatures of
ssdeep have been adapted accordingly. In that sense, each character have been doubled (e.g., A and a have
been transformed into AA and aa, respectively) in the signatures employed with SiSe.

The results obtained when comparing these special signatures are included in Tables 24 and 25.

Table 24. Test results with ad-hoc signatures and SiSe.

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10

S01 100 50 100 50 100 100 100 100 100 100

S02 50 100 50 50 50 50 50 50 50 50

S03 100 50 100 50 100 100 100 100 100 100

S04 50 50 50 100 50 50 50 50 50 50

S05 100 50 100 50 100 100 100 100 100 100

S06 100 50 100 50 100 100 100 100 100 100

S07 100 50 100 50 100 100 100 100 100 100

S08 100 50 100 50 100 100 100 100 100 100

S09 100 50 100 50 100 100 100 100 100 100

S10 100 50 100 50 100 100 100 100 100 100

Table 25. Test results with ad-hoc signatures and ssdeep.

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10

S01 100 50 50 50 0 0 0 55 63 63

S02 50 100 50 50 0 0 0 47 50 50

S03 50 50 100 50 0 0 0 36 44 90

S04 50 50 50 100 0 0 0 32 32 50

S05 0 0 0 0 100 0 0 0 0 0

S06 0 0 0 0 0 100 0 0 0 0

S07 0 0 0 0 0 0 100 0 0 0

S08 55 47 36 32 0 0 0 100 32 32

S09 63 50 44 32 0 0 0 32 100 32

S10 63 50 90 50 0 0 0 32 32 100

From the results obtained, it can be concluded that SiSe provides meaningful results in all the
comparisons, while this is not the case for ssdeep. For instance, the comparison between S01 and S07,
which provides a score of 0 in ssdeep, is considered to have a similarity degree of 100% by SiSe. A similar
situation occurs when comparing for example S02 and S06, where the results provided by SiSe and ssdeep
are 0 and 50, respectively.

Besides, the results provided by SiSe are significantly better adapted to our similarity definition. For
instance, when comparing S01 to S03 and S04, it is clear that S03 is almost the same string as S01, whilst
S04 only shares with S01 half of its content. However, ssdeep is not able to detect that difference and
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assigns a value of 50% in both cases. In comparison, SiSe identifies the similarity degree as 100% and
50%, respectively.

6.4. Suitability

The goal of this test is to compare the running time and the signature size of the four applications
when processing the following files:

• lshort.pdf (613.131 bytes, File 1): The Not so short introduction to LATEXversion 6.3 [55].
• bctls-jdk15on-160.zip (11,933,996 bytes, File 2): One of The Legion of Bouncy Castle’s files [56].
• inkscape-0.92.4-x64.exe (66,983,821 bytes, File 3): An Inkscape 0.92.4 installer [57].
• incubating-netbeans-10.0-source.zip (113,256,313 bytes, File 4): The NetBeans version 10 source

code [58].
• VirtualBox-6.0.4-128413-Win.exe (219,650,560 bytes, File 5): A Virtual Box installation file [59].
• HD_Earth_Views.mov (594,546,566 bytes, File 6): A NASA video taken from their digital archive [60].
• ubuntu-17.10-desktop-amd64.iso (1,502,576,640 bytes, File 7): One of the Ubuntu 17.10 distribution

files [61].
• debian-9.6.0-amd64-DVD-1.iso (3,626,434,560 bytes, File 8): One of the Debian 9.6.0 distribution

files [62].

The previous files were selected in order to cover a wide range of file size values, ranging from less
than a megabyte to several gigabytes. Table 26 shows the running time in seconds when computing the
signature of those files in a desktop with Ubuntu 18.04 operating system, an Intel i7-4790 processor (Intel
Corporation, Santa Clara, CA, USA) at 3.60 GHz, and 16 gigabytes of RAM memory. All the applications
have been executed using the Linux command time, and the output has been redirected to a file in all the
cases in order not to penalize sdhash, as its signatures are very long and would provoke an important
delay if they were to be printed on the screen.

Table 26. Signature generation time in seconds with the set of eight files tested.

SiSe ssdeep sdhash LZJD

File 1 0.012 0.005 0.025 0.499

File 2 0.078 0.087 0.326 1.275

File 3 0.394 0.464 0.352 6.066

File 4 0.723 0.821 0.671 10.535

File 5 1.333 1.573 1.158 20.869

File 6 2.680 3.992 3.054 -

File 7 6.529 9.280 8.042 -

File 8 16.048 24.791 18.657 -

As it can be observed in Table 26, SiSe is only slightly slower than ssdeep with very small files, and
clearly faster than the other applications with medium and large-sized files. It was not possible to process
the larger files with LZJD, so it seems that that application is not well-optimized for files of that size.

Regarding the study on the signature length, Table 27 shows the size of the files that store the
signatures, where in each signature file only the hashes for that file have been included.
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Table 27. Signature size in bytes with the set of eight files tested.

SiSe ssdeep sdhash LZJD

File 1 405 154 21,553 5476

File 2 457 172 405,902 5476

File 3 373 150 1,423,030 5476

File 4 283 170 2,405,783 5476

File 5 313 178 4,665,767 5476

File 6 367 152 12,628,901 -

File 7 577 179 31,915,871 -

File 8 343 136 77,028,165 -

It is clear that ssdeep provides the shortest signatures, followed by SiSe. Both applications generate
signatures of less than 1 kilobyte. On the other hand, in most of the cases, the size of the signature files
of sdhash is several orders of magnitude larger, which could lead to a storage problem when processing
volumes with large files. This fact is due to the proportional relationship between the signature length
and the input size in sdhash [41], something that does not happen in the case of ssdeep and SiSe. In a test
performed by Breitinger and Baier, they found that the signature size when using sdhash is in average
3.3% the size of the original file. Regarding LZJD, the signatures generated by that application always
have the same size, but the application was not able to process the three larger files.

Finally, it should also be noted that the complete file path is included in the signatures of SiSe and
ssdeep, while sdhash and LZJD only include the file name in their signatures.

7. FRASH Tests

As mentioned in Reference [4], one of the major difficulties when comparing approximate matching
algorithms is the diversity of approaches and files tested by each proposal. With that problem in mind,
Breitinger et al. designed and implemented a test framework, called FRASH, that could be used for
comparing different proposals.

In order to complement the results offered previously with another set of tests used by other authors,
we have included in this section the results obtained with FRASH and the t5 dataset [63], a well-known set
of 4457 files (1.8 gigabytes) derived from the GovDocs corpus designed to help test approximate matching
algorithms [13].

The FRASH framework is implemented in Ruby 1.9.3 and requires a Linux environment to be run.
In our evaluation of SiSe, ssdeep, sdhash, and LZJD we have used the same testing environment as in
Section 6 (a desktop with Ubuntu 18.04 operating system, an Intel i7-4790 processor at 3.60 GHz, and 16
gigabytes of RAM memory). Instructions for installing the FRASH framework and compiling the four
applications are included in SiSe’s GitHub page [17].

FRASH allows us to perform five types of tests: efficiency tests, single-common-block correlation
tests, fragment detection tests, alignment robustness tests, and random-noise-resistance tests. Information
regarding how to lauch those tests can be found in References [4,17].

FRASH includes the Ruby files associated to ssdeep and sdhash. In order to include SiSe and LZJD in
the tests, it is necessary to extend FRASH so that it supports both applications. The necessary files for that
task are available in Reference [17]. Those files include the headers used by SiSe and LZJD as well as the
methods for identifying the signature strings and retrieving the numerical result of a comparison.
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Of all the tests implemented by FRASH, it has only been possible to perform (with the four
applications) the tests related to efficiency, alignment, and fragmentation exactly as they are provided.
The obfuscation test could only be completed with SiSe, ssdeep, and sdhash, due to the excessive time
taken by LZJD (more than 3 days for processing just the first file). In comparison, the single-common-block
test could not be completed with any application except ssdeep, as the other algorithms got stuck for
days processing the first files of the batch being tested. For that reason, we have included the limited
comparison regarding the obfuscation test, but have decided not to include the single-common-block test
in our results.

7.1. Efficiency Tests

This test is composed of three parts suitably called runtime efficiency, fingerprint comparison, and
compression [4]. Runtime efficiency measures the time needed by each application for reading the input
files and generating the corresponding fingerprints. Those fingerprints are stored by FRASH in a temporary
file so they can be used in the fingerprint comparison, which measures the time needed by the algorithms
to complete an all-against-all comparison of the fingerprints. Finally, compression measures the ratio
between input and output of each algorithm and returns a percentage value.

Table 28 shows the summary of the efficiency test when using all the files of the t5 corpus as input to
the test (the screenshot and text file with the results of the test can be found in Reference [17]). This table
contains the digest generation and all-pairs comparison time as well as the average digest length.

Table 28. Efficiency test results.

SiSe ssdeep sdhash LZJD

Digest generation (s) 8.83 13.50 11.07 22.87

All-pairs comparison (s) 45.17 7.19 137.38 2.26

Average digest length (bytes) 298 57 10,368 4098

Average digest ratio (%) 0.069 0.013 2.417 0.955

As the data included in the table shows, SiSe is the fastest application for digest generation thanks to
its double multi-threading capabilities. As expected due to its design (usage of two-character elements,
secondary digest larger than the primary digest and lack of digest limits), the average length for the digests
generated by SiSe is approximately six times the length of ssdeep digests. It must be noted that FRASH
does not compute the size of the digest as the size of the file generated: It removes both the header and the
path of the file, and applies a factor of 3/4 to the Base64 string which forms each signature (which is a
different approach from the one used in the tests described in Section 6.4, where the total length of the file
was taken into account).

Finally, the all-pairs-comparison shows that LZJD clearly outperforms the other algorithms, especially
sdhash and SiSe. In the case of SiSe, the fingerprint comparison is slow because of the complex method
used in the comparison of digests and its implementation, though it is approximately three times faster
than sdhash.

7.2. Alignment Tests

This test analyses the impact of inserting byte sequences at the beginning of an input by means of
fixed and percentage blocks [4]. Regarding the interpretation of the results, in the case of percentual
addition, a test associated to the value 100% means that new content of equal size to the original size has
been added to the file, so if comparing the amount of the larger file (i.e., the modified file) that contains
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data included in the smaller file (i.e., the original file), in the case of that specific test the result of the
comparison should be around 50 (following our similarity definition). In another example, adding 300% of
new content means that the result of the comparison should be roughly 25% using the same definition
of similarity.

Table 29 includes an extract of the alignment test performed by FRASH over a random selection of
100 files taken from the t5 corpus (the list of files tested and the screenshots and text file with the results of
the test can be found in Reference [17]). In each cell, the first element represents the average score and the
second one the number of matches (where the maximum is 100, the number of files tested).

Table 29. Alignment robustness test with percentage blocks showing the score (first value) and the number
of matches (second value) when testing 100 files taken from the t5 corpus.

SiSe ssdeep sdhash LZJD

20% 78.41 85.67 80.08 33.50
100 97 100 100

40% 65.55 75.14 76.75 24.75
100 95 100 100

60% 56.69 68.66 79.12 19.98
100 91 100 100

80% 50.07 63.48 78.58 16.86
100 86 100 100

100% 44.83 60.68 78.76 14.74
100 71 100 100

200% 29.08 48.21 75.68 8.91
100 24 100 100

300% 21.79 31.00 78.68 6.52
100 5 100 100

400% 17.53 22.00 77.52 5.14
100 1 100 100

500% 14.45 - 77.69 4.35
100 - 100 100

While sdhash is able to provide a match in all the cases, its results are located in the narrow band
70–80%, which does not permit to differentiate between the different testing scenarios. In comparison,
LZJD is also able to match all the cases, but it produces values significantly lower than expected in all the
tests (e.g., in the 100% test, the result is 14.74%). Both SiSe and ssdeep provide results better adapted to
those expected according to our definition of similarity, but SiSe clearly outperforms ssdeep in the number
of matches.

7.3. Fragment Detection Tests

Fragment detection identifies the minimum correlation between an input and a fragment (i.e., it
determines what is the smallest fragment for which the similarity tool reliably correlates the fragment and
the original file). It sequentially cuts a certain percentage (which varies along the test) of the original input
length and generates the matching score. This test includes two modes: Random cutting (the framework
randomly decides whether to start cutting at the beginning or at the end of an input and then continues
randomly) and end side cutting (it only cuts blocks at the end of an input).
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Table 30 includes an extract of the fragmentation tests performed by FRASH over the same random
selection of 100 files belonging to the t5 corpus (the complete results can be found in Reference [17]).
While SiSe and LZJD are able to match all the files, the scores of LZJD deviate significantly more
from what is expected in several tests. In comparison to SiSe, both ssdeep and sdhash provide higher
outputs, which from our point of view makes SiSe the best option for providing a value according to our
similarity definition.

Table 30. Fragment detection test with two cutting modes (random start/end only) and number of matches
in each case.

File Size SiSe ssdeep sdhash LZJD

95% 94.52/94.96 96.63/97.36 90.92/99.78 73.21/92.51
100/100 100/100 100/100 100/100

75% 76.54/79.97 83.49/88.54 75.96/99.58 40.12/65.97
100/100 99/100 100/100 100/100

50% 52.44/54.79 66.18/71.34 76.79/99.67 25.51/39.06
100/100 90/90 100/100 100/100

25% 26.69/29.35 48.36/60.44 81.81/99.39 13.57/19.02
100/100 11/25 100/98 100/100

5% 5.18/5.67 -/66.00 68.92/86.75 3.97/4.60
100/100 -/1 85/88 100/100

7.4. Single-Common-Block and Obfuscation Tests

Unfortunately, it has not been possible to complete the single common block and obfuscation tests
in their original form with the four applications. Due to the design of the tests and the characteristics
of the four algorithms evaluated, FRASH gets in a loop when processing most of the files used in the
previous sections.

Both tests evaluate the algorithms for each of the files entered as an argument and change the files so
the score gradually decreases until it reaches the value 0 (which is the halting condition). However, even
with files whose size is less than 1 megabyte, LZJD gets active in the loop for several days with just one
file, and the same happens (though to a lesser extent) with sdhash and SiSe. The result is that, after several
days, there was no progress in the tests.

As an alternative, we were able to perform the obfuscation test with SiSe, ssdeep, and sdhash using a
selection of the seven files (each one of a different file type) with minimum size from the t5 batch. The
obfuscation test tries to determine what is the maximum number of changes if the match score is requested
not to be lower than a certain value. This allows an estimation of how many bytes need to be changed all
over the input to receive a non-match. The results of that test are offered in Table 31.
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Table 31. Obfuscation resistance test showing the score (first value) and the number of matches (second
value) when testing 7 files.

SiSe ssdeep sdhash

≥90 8.89 6.86 5.71
7 7 7

≥70 33.71 26.00 21.86
7 7 7

≥50 84.57 40.50 38.86
7 5 7

≥30 183.14 - 73.00
7 - 7

≥10 526.57 - 182.71
7 - 7

The results of this test show that sdhash is the most resistant of the three algorithms. While SiSe and
ssdeep offer similar values for the first three cases displayed in Table 31, ssdeep does not produce any
output for the rest of the cases and SiSe is able to provide a match in all the cases.

8. Conclusions

In this contribution, a signature generation procedure based on ssdeep and a new algorithm for
comparing two file signatures have been presented. We have implemented our tool, SiSe, to fulfil
the requirements that any bytewise approximate matching application should satisfy, as indicated in
Section 4.1:

(G1) Signature compression: The signature obtained is much smaller than the data file used as
input. In this aspect ssdeep provides shorter signatures than SiSe, with both applications clearly
outperforming sdhash and LZJD in the vast majority of cases (see Sections 6.4 and 7.1).

(G2) Ease of computation: The signature generation procedure is fast due to the use of the Adler-32 and
FNV hashing functions, and the multi-threading design that allows distribution of the workload
among the available processor logical cores (see Sections 4.2 and 5.2). As a result, SiSe outperforms
ssdeep, sdhash, and LZJD in most of the signature generation tests, specially those with large files.

(G3) Coverage: Every byte of the input file is used by SiSe to process the hash value (see Sections 4.2
and 5.2). As there is no signature maximum length established in our design, it is guaranteed that
all the data file is analysed under the same conditions. In this regard, it can be concluded that
SiSe outperforms ssdeep, since if ssdeep reaches the maximum number of trigger points (63), the
remaining content of the file is managed as a single trigger point, which consequently leads to
potentially distinctive information loss.

(G4) Independence regarding the input file size: Thanks to the proposed signature generation procedure,
the signature length does not depend on the file size. In this way, it allows us to obtain signatures of
less than 1 kilobyte in the majority of cases (see Section 6).

(C1) Generation of a similarity score consistent with the content of the compared files: The score returned
by SiSe is ranged between 0 and 100, representing the percentage of a file contained in another file
(see Sections 4.2 and 6.1). Based on the set of tests performed, we have shown that, according to
the definition of similarity managed in this contribution, SiSe generates results better adapted to
that similarity definition than ssdeep, sdhash, and LZJD for most of the tests (see Sections 6 and 7).
The results obtained with SiSe are adequate and show low values when comparing data files with
different content, reducing the risk of false positives.
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(C2) Ease of computation: Due to the design of the complex signature comparison procedure used in
SiSe, its performance is not as good as the performance of ssdeep and LZJD, though SiSe clearly
outperforms sdhash in tests with multiple files (see Sections 4.2 and 5.2).

(C3) Obfuscation resistance: The possibility (available to the user) to change parameters such as the
decremental value, the length of the sliding window or the block size prevents attackers from
figuring out which byte string would generate a trigger point. Additionally, as there is no limit in
the size of the signature generated by SiSe, it is irrelevant if attackers insert at the beginning of the
file 63 (or more) trigger points (see Sections 4.2 and 5.2).

(C4) Content swapping detection: In case data blocks are moved within the file, SiSe readily detects
those movements, as shown in the ad-hoc signature tests (see Section 4.3).

(C5) Comparison of files of different sizes: Thanks to the modes made available in the implementation
(comparison of two content files, two signature files, and one content file and one signature file),
SiSe can compare files of very different sizes (see Sections 6 and 7). However, it must be noted
that, given that the score provided by SiSe ranges from 0 to 100, in practice comparing files where
the length proportion is greater that 100 (e.g., 1 megabyte and 100 megabytes) will in most cases
produce a comparison score of 0, as the content of the larger file also found in the smaller file is
expected to be less than 1%.

In the implementation of SiSe we have limited the maximum length to 2560 double characters for
performance reasons, though given that the algorithm computes the initial block size with the goal to
obtain a leading signature of 64 double characters, the number of files potentially affected by that limitation
is practicable negligible.

Our algorithm, which can be applied to forensic operations in different types of digital media, shows
results appropriately adapted to the similarity definition that we have used along this contribution. Our
implementation is only slower than ssdeep when managing very small files, and faster than the other three
algorithms in the rest of cases, specially when computing the signature of large files. Additionally, the
signatures generated by our algorithm are much smaller than the ones of sdhash and, to a lesser extent,
LZJD, making it more suitable for processing sets of large files.

From a practical standpoint, SiSe is able to compare files without imposing any limitation to their
respective size, which consequently allows us to use it in many different situations (e.g., detecting
plagiarism, searching for a list of items inside a much larger document, looking for malware hidden in
executable files, etc.). Besides, it is able to detect the resemblance in some special cases where the other
algorithms considered in this contribution fail.

In our opinion, according to the previously mentioned features, our proposal is a good alternative to
the most common tools used nowadays (i.e., ssdeep, sdhash, and LZJD) for evaluating files, producing a
clear value representing the similarity degree, specially when the goal is to obtain accurate information
about the percentage of a file included in another file.
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Abbreviations

The following abbreviations are used in this manuscript:

BBH Block-Based Hashing
BBR Block-Based Rebuilding
BMP Bitmap
CTPH Context-Triggered Hashing
FNV Fowler-Noll-Vo
FRASH Framework to test Algorithms Of Similarity Hashing
LSH Locality Sensitive Hashing
LZJD Lempel-Ziv Jaccard Distance
NIST National Institute of Standards and Technology
NSRL National Software Reference Library
SIF Statistically-Improbable Features
SISE Similarity Search
SPH Similarity Preserving Hashing
TLSH Trend Micro Locality Sensitive Hash
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